Fast Temporal Information Retrieval In Videos With Visual Memory

Jungkyoo Shin, Jinyoung Moon
{"title":"Fast Temporal Information Retrieval In Videos With Visual Memory","authors":"Jungkyoo Shin, Jinyoung Moon","doi":"10.1109/ICAIIC51459.2021.9415226","DOIUrl":null,"url":null,"abstract":"Due to recent increases in video usage, there have been many studies about processing and managing information within huge volumes of videos. Existing methods for video retrieval aim to retrieve only similar frames related to a query image and compare all frames to the query image, which is costly in run-time and memory usage. To resolve these limitations, we propose a fast retrieval method for precise temporal information with visual memory. Our model compresses an input video into a compressed visual memory and applies an attention-based layer to obtain the probability of a given query image’s existence. To the best of our knowledge, we are the first to attempt video retrieval for temporal information using visual memory. To show the efficiency and effectiveness of our model, we conducted experiments for temporal information retrieval on 60-second videos from TV shows and dramas. Our model could effectively compress a video to visual memory with space-savings of 93.6% and 99.1% compared to frame features and original video, respectively. Using the compressed visual memory, our method retrieved temporal information at 250K fps, which is 28x and 4,164x faster than retrieval methods using frame features and frames, respectively.","PeriodicalId":432977,"journal":{"name":"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC51459.2021.9415226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to recent increases in video usage, there have been many studies about processing and managing information within huge volumes of videos. Existing methods for video retrieval aim to retrieve only similar frames related to a query image and compare all frames to the query image, which is costly in run-time and memory usage. To resolve these limitations, we propose a fast retrieval method for precise temporal information with visual memory. Our model compresses an input video into a compressed visual memory and applies an attention-based layer to obtain the probability of a given query image’s existence. To the best of our knowledge, we are the first to attempt video retrieval for temporal information using visual memory. To show the efficiency and effectiveness of our model, we conducted experiments for temporal information retrieval on 60-second videos from TV shows and dramas. Our model could effectively compress a video to visual memory with space-savings of 93.6% and 99.1% compared to frame features and original video, respectively. Using the compressed visual memory, our method retrieved temporal information at 250K fps, which is 28x and 4,164x faster than retrieval methods using frame features and frames, respectively.
具有视觉记忆的视频的快速时间信息检索
由于近年来视频使用量的增加,人们对大量视频中的信息处理和管理进行了许多研究。现有的视频检索方法的目标是只检索与查询图像相关的相似帧,并将所有帧与查询图像进行比较,这在运行时间和内存使用方面都很昂贵。为了解决这些问题,我们提出了一种基于视觉记忆的精确时间信息快速检索方法。我们的模型将输入视频压缩到压缩的视觉记忆中,并应用基于注意力的层来获得给定查询图像存在的概率。据我们所知,我们是第一个尝试用视觉记忆来检索时间信息的视频。为了证明该模型的有效性和有效性,我们对60秒的电视节目和电视剧视频进行了时间信息检索实验。我们的模型可以有效地将视频压缩到视觉内存中,与帧特征和原始视频相比,分别节省了93.6%和99.1%的空间。利用压缩的视觉记忆,我们的方法以250K / fps的速度检索时间信息,分别比使用帧特征和帧的检索方法快28倍和4164倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信