Generating Illustrative Snippets for Open Data on the Web

Gong Cheng, Cheng Jin, Wentao Ding, Danyun Xu, Yuzhong Qu
{"title":"Generating Illustrative Snippets for Open Data on the Web","authors":"Gong Cheng, Cheng Jin, Wentao Ding, Danyun Xu, Yuzhong Qu","doi":"10.1145/3018661.3018670","DOIUrl":null,"url":null,"abstract":"To embrace the open data movement, increasingly many datasets have been published on the Web to be reused. Users, when assessing the usefulness of an unfamiliar dataset, need means to quickly inspect its contents. To satisfy the needs, we propose to automatically extract an optimal small portion from a dataset, called a snippet, to concisely illustrate the contents of the dataset. We consider the quality of a snippet from three aspects: coverage, familiarity, and cohesion, which are jointly formulated in a new combinatorial optimization problem called the maximum-weight-and-coverage connected graph problem (MwcCG). We give a constant-factor approximation algorithm for this NP-hard problem, and experiment with our solution on real-world datasets. Our quantitative analysis and user study show that our approach outperforms a baseline approach.","PeriodicalId":344017,"journal":{"name":"Proceedings of the Tenth ACM International Conference on Web Search and Data Mining","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3018661.3018670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

To embrace the open data movement, increasingly many datasets have been published on the Web to be reused. Users, when assessing the usefulness of an unfamiliar dataset, need means to quickly inspect its contents. To satisfy the needs, we propose to automatically extract an optimal small portion from a dataset, called a snippet, to concisely illustrate the contents of the dataset. We consider the quality of a snippet from three aspects: coverage, familiarity, and cohesion, which are jointly formulated in a new combinatorial optimization problem called the maximum-weight-and-coverage connected graph problem (MwcCG). We give a constant-factor approximation algorithm for this NP-hard problem, and experiment with our solution on real-world datasets. Our quantitative analysis and user study show that our approach outperforms a baseline approach.
为Web上的开放数据生成说明性片段
为了拥抱开放数据运动,越来越多的数据集被发布到Web上以供重用。用户在评估一个不熟悉的数据集的有用性时,需要快速检查其内容的方法。为了满足这一需求,我们建议从数据集中自动提取最优的一小部分,称为片段,以简洁地说明数据集的内容。我们从三个方面考虑片段的质量:覆盖率、熟悉度和内聚性,这三个方面在称为最大权重和覆盖率连接图问题(MwcCG)的新组合优化问题中共同表述。我们给出了这个np困难问题的常因子近似算法,并在现实世界的数据集上实验我们的解决方案。我们的定量分析和用户研究表明,我们的方法优于基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信