An operator method for semi-supervised learning

W. Lu, Yan Bai, Yi Tang, Yanfang Tao
{"title":"An operator method for semi-supervised learning","authors":"W. Lu, Yan Bai, Yi Tang, Yanfang Tao","doi":"10.1109/ICWAPR.2009.5207473","DOIUrl":null,"url":null,"abstract":"We focus on a semi-supervised framework that incorporates labeled and unlabeled data in a general- purpose learner. We proposed a semi-learning algorithm based on a novel form of regularization that allows us to emphasize the complexity of the representation of learners. With operator method, the optimal learner learned by such algorith is explicitly represented by sampling operator when the hyperspace is a reproducing kernel Hilbert space. Based on such explicit representation, a simple and convenient algorithm is designed. Some preliminary experiments validate the effectiveness of the algorith.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"85 22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We focus on a semi-supervised framework that incorporates labeled and unlabeled data in a general- purpose learner. We proposed a semi-learning algorithm based on a novel form of regularization that allows us to emphasize the complexity of the representation of learners. With operator method, the optimal learner learned by such algorith is explicitly represented by sampling operator when the hyperspace is a reproducing kernel Hilbert space. Based on such explicit representation, a simple and convenient algorithm is designed. Some preliminary experiments validate the effectiveness of the algorith.
半监督学习的算子方法
我们关注的是一个半监督的框架,它将标记和未标记的数据合并到一个通用的学习器中。我们提出了一种基于一种新的正则化形式的半学习算法,它使我们能够强调学习者表示的复杂性。采用算子方法,当超空间为再现核希尔伯特空间时,该算法学习到的最优学习者用采样算子显式表示。基于这种显式表示,设计了一种简单方便的算法。初步实验验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信