Packet Scheduling with Optional Client Privacy

and H W Beams, Sampath Kannan, Sebastian Angel
{"title":"Packet Scheduling with Optional Client Privacy","authors":"and H W Beams, Sampath Kannan, Sebastian Angel","doi":"10.1145/3460120.3485371","DOIUrl":null,"url":null,"abstract":"Existing network switches implement scheduling disciplines such as FIFO or deficit round robin that provide good utilization or fairness across flows, but do so at the expense of leaking a variety of information via timing side channels. To address this privacy breach, we propose a new scheduling mechanism for switches called indifferent-first scheduling (IFS). A salient aspect of IFS is that it provides privacy (a notion of strong isolation) to clients that opt-in, while preserving the (good) performance and utilization of FIFO or round robin for clients that are satisfied with the status quo. Such a hybrid scheduling mechanism addresses the main drawback of prior proposals such as time-division multiple access (TDMA) that provide strong isolation at the cost of low utilization and increased packet latency for all clients. We identify limitations of modern programmable switches which inhibit an implementation of IFS without compromising its privacy guarantees, and show that a version of IFS with full security can be implemented at line rate in the recently proposed push-in-first-out (PIFO) queuing architecture.","PeriodicalId":135883,"journal":{"name":"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460120.3485371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Existing network switches implement scheduling disciplines such as FIFO or deficit round robin that provide good utilization or fairness across flows, but do so at the expense of leaking a variety of information via timing side channels. To address this privacy breach, we propose a new scheduling mechanism for switches called indifferent-first scheduling (IFS). A salient aspect of IFS is that it provides privacy (a notion of strong isolation) to clients that opt-in, while preserving the (good) performance and utilization of FIFO or round robin for clients that are satisfied with the status quo. Such a hybrid scheduling mechanism addresses the main drawback of prior proposals such as time-division multiple access (TDMA) that provide strong isolation at the cost of low utilization and increased packet latency for all clients. We identify limitations of modern programmable switches which inhibit an implementation of IFS without compromising its privacy guarantees, and show that a version of IFS with full security can be implemented at line rate in the recently proposed push-in-first-out (PIFO) queuing architecture.
具有可选客户端隐私的数据包调度
现有的网络交换机实现调度规则,如FIFO或亏缺轮询,这些规则提供了良好的利用率或跨流的公平性,但这样做的代价是通过定时侧信道泄露各种信息。为了解决这种隐私泄露问题,我们提出了一种新的交换机调度机制,称为无关优先调度(IFS)。IFS的一个突出方面是,它为选择加入的客户端提供隐私(一种强隔离的概念),同时为满足现状的客户端保留(良好的)性能和FIFO或轮循的利用率。这种混合调度机制解决了先前建议的主要缺点,例如时分多址(TDMA),后者以低利用率和增加所有客户机的数据包延迟为代价提供了强隔离。我们确定了现代可编程交换机的限制,这些限制在不损害其隐私保证的情况下抑制了IFS的实现,并表明具有完全安全性的IFS版本可以在最近提出的推入先出(PIFO)队列架构中以线率实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信