{"title":"Application of XAI-based framework for PV Energy Generation Forecasting","authors":"B. Teixeira, Leonor Carvalhais, T. Pinto, Z. Vale","doi":"10.1109/CAI54212.2023.00036","DOIUrl":null,"url":null,"abstract":"The structural changes in the energy sector caused by renewable sources and digitization have resulted in an increased use of Artificial Intelligence (AI), including Machine Learning (ML) models. However, these models’ black-box nature and complexity can create issues with transparency and trust, thereby hindering their interpretability. The use of Explainable AI (XAI) can offer a solution to these challenges. This paper explores the application of an XAI-based framework to analyze and evaluate a photovoltaic energy generation forecasting problem and contribute to the trustworthiness of ML solutions.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The structural changes in the energy sector caused by renewable sources and digitization have resulted in an increased use of Artificial Intelligence (AI), including Machine Learning (ML) models. However, these models’ black-box nature and complexity can create issues with transparency and trust, thereby hindering their interpretability. The use of Explainable AI (XAI) can offer a solution to these challenges. This paper explores the application of an XAI-based framework to analyze and evaluate a photovoltaic energy generation forecasting problem and contribute to the trustworthiness of ML solutions.