Multidimensional spectral factorization

D. Goodman, M. Ekstrom
{"title":"Multidimensional spectral factorization","authors":"D. Goodman, M. Ekstrom","doi":"10.1109/CDC.1978.268011","DOIUrl":null,"url":null,"abstract":"In this paper, we present a procedure for the spectral factorization of multidimensional spectral density functions. Properties of the multidimensional cepstrum are developed and used as a basis for the procedure. In analogy with Wiener's one-dimensional factorization, the resulting factors are stable and realizable (i.e., recursible). A numerical algorithm for performing the factorization is described, along with its use in obtaining unilateral representations of multidimensional random fields.","PeriodicalId":375119,"journal":{"name":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1978-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1978.268011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a procedure for the spectral factorization of multidimensional spectral density functions. Properties of the multidimensional cepstrum are developed and used as a basis for the procedure. In analogy with Wiener's one-dimensional factorization, the resulting factors are stable and realizable (i.e., recursible). A numerical algorithm for performing the factorization is described, along with its use in obtaining unilateral representations of multidimensional random fields.
多维光谱分解
本文给出了一种多维谱密度函数的谱分解方法。开发了多维倒谱的属性,并将其用作该程序的基础。与维纳的一维分解类似,所得到的因子是稳定的和可实现的(即可递归)。描述了一种用于执行因数分解的数值算法,以及它在获得多维随机场的单边表示中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信