Defocused image restoration method based on micro-nano scale

Yongjun Liu, Qiuyu Wu, Mingxin Zhang, Yi Wang
{"title":"Defocused image restoration method based on micro-nano scale","authors":"Yongjun Liu, Qiuyu Wu, Mingxin Zhang, Yi Wang","doi":"10.24294/can.v4i2.1335","DOIUrl":null,"url":null,"abstract":"An image adaptive noise reduction enhancement algorithm based on NSCT is proposed to perform image restoration preprocessing on the defocused image obtained under the microscope. Defocused images acquired under micro-nano scale optical microscopy, usually with inconspicuous details, edges and contours, affect the accuracy of subsequent observation tasks. Due to its multi-scale and multi-directionality, the NSCT transform has superior transform functions and can obtain more textures and edges of images. Combined with the characteristics of micro-nanoscale optical defocus images, the NSCT inverse transform is performed on all sub-bands to reconstruct the image. Finally, the experimental results of the standard 500nm scale grid, conductive probe and triangular probe show that the proposed algorithm has a better image enhancement effect and significantly improves the quality of out-of-focus images.","PeriodicalId":331072,"journal":{"name":"Characterization and Application of Nanomaterials","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Characterization and Application of Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24294/can.v4i2.1335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An image adaptive noise reduction enhancement algorithm based on NSCT is proposed to perform image restoration preprocessing on the defocused image obtained under the microscope. Defocused images acquired under micro-nano scale optical microscopy, usually with inconspicuous details, edges and contours, affect the accuracy of subsequent observation tasks. Due to its multi-scale and multi-directionality, the NSCT transform has superior transform functions and can obtain more textures and edges of images. Combined with the characteristics of micro-nanoscale optical defocus images, the NSCT inverse transform is performed on all sub-bands to reconstruct the image. Finally, the experimental results of the standard 500nm scale grid, conductive probe and triangular probe show that the proposed algorithm has a better image enhancement effect and significantly improves the quality of out-of-focus images.
基于微纳尺度的离焦图像恢复方法
提出了一种基于NSCT的图像自适应降噪增强算法,对显微镜下获得的散焦图像进行图像恢复预处理。在微纳尺度光学显微镜下获得的散焦图像,通常具有不明显的细节、边缘和轮廓,影响后续观测任务的准确性。NSCT变换由于其多尺度和多方向性,具有优越的变换功能,可以获得更多的图像纹理和边缘。结合微纳尺度光学离焦图像的特点,对各子带进行NSCT反变换,重建图像。最后,对标准500nm尺度网格、导电探针和三角形探针的实验结果表明,本文算法具有较好的图像增强效果,显著提高了失焦图像的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信