Bandwidth-Efficient Target Tracking In Distributed Sensor Networks Using Particle Filters

Long Zuo, K. Mehrotra, P. Varshney, C. Mohan
{"title":"Bandwidth-Efficient Target Tracking In Distributed Sensor Networks Using Particle Filters","authors":"Long Zuo, K. Mehrotra, P. Varshney, C. Mohan","doi":"10.1109/ICIF.2006.301692","DOIUrl":null,"url":null,"abstract":"This paper considers the problem tracking a moving target in a multisensor environment using distributed particle filters (DPFs). Particle filters have a great potential for solving highly nonlinear and non-Gaussian estimation problems, in which the traditional Kalman filter (KF) and extended Kalman filter (EKF) generally fail. How ever, in a sensor network, the implementation of distributed particle filters requires huge communications between local sensor nodes and the fusion center. To make the DPF approach feasible for real time processing and to reduce communication requirements, we approximate a posteriori distribution obtained from the local particle filters by a Gaussian mixture model (GMM). We propose a modified EM algorithm to estimate the parameters of GMMs obtained locally. These parameters are transmitted to the fusion center where the best linear unbiased estimator (BLUE) is used for fusion. Simulation results are presented to illustrate the performance of the proposed algorithm","PeriodicalId":248061,"journal":{"name":"2006 9th International Conference on Information Fusion","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2006.301692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

This paper considers the problem tracking a moving target in a multisensor environment using distributed particle filters (DPFs). Particle filters have a great potential for solving highly nonlinear and non-Gaussian estimation problems, in which the traditional Kalman filter (KF) and extended Kalman filter (EKF) generally fail. How ever, in a sensor network, the implementation of distributed particle filters requires huge communications between local sensor nodes and the fusion center. To make the DPF approach feasible for real time processing and to reduce communication requirements, we approximate a posteriori distribution obtained from the local particle filters by a Gaussian mixture model (GMM). We propose a modified EM algorithm to estimate the parameters of GMMs obtained locally. These parameters are transmitted to the fusion center where the best linear unbiased estimator (BLUE) is used for fusion. Simulation results are presented to illustrate the performance of the proposed algorithm
基于粒子滤波的分布式传感器网络带宽高效目标跟踪
本文研究了在多传感器环境下使用分布式粒子滤波器跟踪运动目标的问题。粒子滤波在解决高度非线性和非高斯估计问题方面具有很大的潜力,在这些问题上,传统的卡尔曼滤波(KF)和扩展卡尔曼滤波(EKF)一般都不能很好地解决。然而,在传感器网络中,分布式粒子滤波的实现需要在局部传感器节点和融合中心之间进行大量通信。为了使DPF方法在实时处理中可行并降低通信要求,我们使用高斯混合模型(GMM)近似局部粒子滤波器得到的后验分布。我们提出了一种改进的EM算法来估计局部得到的gmm参数。这些参数被传送到融合中心,在那里使用最佳线性无偏估计器(BLUE)进行融合。仿真结果验证了所提算法的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信