An integral approach for Geno-Simulated Annealing

Mostafa M. Hassan, F. Karray, M. Kamel, A. Ahmadi
{"title":"An integral approach for Geno-Simulated Annealing","authors":"Mostafa M. Hassan, F. Karray, M. Kamel, A. Ahmadi","doi":"10.1109/HIS.2010.5600023","DOIUrl":null,"url":null,"abstract":"Global optimization is the problem of finding the global optimum of any given function in a certain search space. Simulated Annealing (SA) and Genetic Algorithms (GA) are among the well-known techniques used for global optimization. Adjusting the parameters of SA such as the temperature schedule and the neighborhood range plays an important role in the performance of the algorithm. Furthermore, many studies in literature showed that the best values for SA parameters depend on the optimization problem. We introduce a novel hybrid approach that uses SA to solve an optimization problem and uses GA simultaneously to adapt the parameters of SA. This new approach is referred to as Geno-Simulated Annealing (GSA). It does not require any predefined values for the parameters of SA. To evaluate the performance of the proposed approach, we used seven well-known benchmark optimization functions. The obtained results indicate the superiority of the proposed approach as compared to a similar approach and to conventional SA.","PeriodicalId":174618,"journal":{"name":"2010 10th International Conference on Hybrid Intelligent Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2010.5600023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Global optimization is the problem of finding the global optimum of any given function in a certain search space. Simulated Annealing (SA) and Genetic Algorithms (GA) are among the well-known techniques used for global optimization. Adjusting the parameters of SA such as the temperature schedule and the neighborhood range plays an important role in the performance of the algorithm. Furthermore, many studies in literature showed that the best values for SA parameters depend on the optimization problem. We introduce a novel hybrid approach that uses SA to solve an optimization problem and uses GA simultaneously to adapt the parameters of SA. This new approach is referred to as Geno-Simulated Annealing (GSA). It does not require any predefined values for the parameters of SA. To evaluate the performance of the proposed approach, we used seven well-known benchmark optimization functions. The obtained results indicate the superiority of the proposed approach as compared to a similar approach and to conventional SA.
基因模拟退火的积分方法
全局优化是在一定的搜索空间中找到任意给定函数的全局最优解的问题。模拟退火(SA)和遗传算法(GA)是众所周知的用于全局优化的技术。温度调度和邻域范围等参数的调整对算法的性能起着重要的作用。此外,许多文献研究表明,SA参数的最优值取决于优化问题。本文提出了一种新的混合方法,即利用遗传算法求解优化问题,同时利用遗传算法对遗传算法的参数进行自适应。这种新方法被称为基因模拟退火(GSA)。它不需要SA的参数有任何预定义的值。为了评估所提出方法的性能,我们使用了七个著名的基准优化函数。所得结果表明,与同类方法和常规SA相比,所提出的方法具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信