Interactive k-d tree GPU raytracing

D. Horn, J. Sugerman, M. Houston, P. Hanrahan
{"title":"Interactive k-d tree GPU raytracing","authors":"D. Horn, J. Sugerman, M. Houston, P. Hanrahan","doi":"10.1145/1230100.1230129","DOIUrl":null,"url":null,"abstract":"Over the past few years, the powerful computation rates and high memory bandwidth of GPUs have attracted efforts to run raytracing on GPUs. Our work extends Foley et al.'s GPU k-d tree research. We port their kd-restart algorithm from multi-pass, using CPU load balancing, to single pass, using current GPUs' branching and looping abilities. We introduce three optimizations: a packetized formulation, a technique for restarting partially down the tree instead of at the root, and a small, fixed-size stack that is checked before resorting to restart. Our optimized implementation achieves 15 - 18 million primary rays per second and 16 - 27 million shadow rays per second on our test scenes. Our system also takes advantage of GPUs' strengths at rasterization and shading to offer a mode where rasterization replaces eye ray scene intersection, and primary hits and local shading are produced with standard Direct3D code. For 1024x1024 renderings of our scenes with shadows and Phong shading, we achieve 12-18 frames per second. Finally, we investigate the efficiency of our implementation relative to the computational resources of our GPUs and also compare it against conventional CPUs and the Cell processor, which both have been shown to raytrace well.","PeriodicalId":140639,"journal":{"name":"Proceedings of the 2007 symposium on Interactive 3D graphics and games","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"258","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 symposium on Interactive 3D graphics and games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1230100.1230129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 258

Abstract

Over the past few years, the powerful computation rates and high memory bandwidth of GPUs have attracted efforts to run raytracing on GPUs. Our work extends Foley et al.'s GPU k-d tree research. We port their kd-restart algorithm from multi-pass, using CPU load balancing, to single pass, using current GPUs' branching and looping abilities. We introduce three optimizations: a packetized formulation, a technique for restarting partially down the tree instead of at the root, and a small, fixed-size stack that is checked before resorting to restart. Our optimized implementation achieves 15 - 18 million primary rays per second and 16 - 27 million shadow rays per second on our test scenes. Our system also takes advantage of GPUs' strengths at rasterization and shading to offer a mode where rasterization replaces eye ray scene intersection, and primary hits and local shading are produced with standard Direct3D code. For 1024x1024 renderings of our scenes with shadows and Phong shading, we achieve 12-18 frames per second. Finally, we investigate the efficiency of our implementation relative to the computational resources of our GPUs and also compare it against conventional CPUs and the Cell processor, which both have been shown to raytrace well.
交互式k-d树GPU光线追踪
在过去的几年里,gpu强大的计算速度和高存储带宽吸引了人们在gpu上运行光线追踪的努力。我们的工作扩展了Foley等人的GPU k-d树研究。我们将他们的kd-restart算法从多通道(使用CPU负载平衡)移植到单通道(使用当前gpu的分支和循环能力)。我们介绍了三种优化:一种打包的公式,一种从树中部分重新启动而不是从根重新启动的技术,以及一个小的、固定大小的堆栈,在重新启动之前进行检查。在我们的测试场景中,我们优化的实现实现了每秒1500 - 1800万主射线和每秒1600 - 2700万阴影射线。我们的系统还利用了gpu在栅格化和阴影方面的优势,提供了一种模式,在这种模式中,栅格化取代了眼睛光线场景的交叉点,并使用标准的Direct3D代码生成主要命中率和局部阴影。对于带有阴影和Phong阴影的场景的1024x1024渲染,我们实现了每秒12-18帧。最后,我们研究了我们的实现相对于gpu的计算资源的效率,并将其与传统的cpu和Cell处理器进行了比较,这两种处理器都显示出良好的光线追踪能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信