Evolutionary Algorithm Using Random Multi-point Crossover Operator for Learning Bayesian Network Structures

E. B. D. Santos, Estevam Hruschka, N. Ebecken
{"title":"Evolutionary Algorithm Using Random Multi-point Crossover Operator for Learning Bayesian Network Structures","authors":"E. B. D. Santos, Estevam Hruschka, N. Ebecken","doi":"10.1109/ICMLA.2010.70","DOIUrl":null,"url":null,"abstract":"Variable Ordering plays an important role when inducing Bayesian Networks. Previous works in the literature suggest that the use of genetic/evolutionary algorithms (EAs) for dealing with VO, when learning a Bayesian Network structure from data, is worth pursuing. This work proposes a new crossover operator, named Random Multi-point Crossover Operator (RMX), to be used with the Variable Ordering Evolutionary Algorithm (VOEA). Empirical results obtained by VOEA are compared to the ones achieved by VOGA (Variable Ordering Genetic Algorithm), and indicated improvement in the quality of VO and the induced BN structure.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Variable Ordering plays an important role when inducing Bayesian Networks. Previous works in the literature suggest that the use of genetic/evolutionary algorithms (EAs) for dealing with VO, when learning a Bayesian Network structure from data, is worth pursuing. This work proposes a new crossover operator, named Random Multi-point Crossover Operator (RMX), to be used with the Variable Ordering Evolutionary Algorithm (VOEA). Empirical results obtained by VOEA are compared to the ones achieved by VOGA (Variable Ordering Genetic Algorithm), and indicated improvement in the quality of VO and the induced BN structure.
基于随机多点交叉算子的进化贝叶斯网络结构学习算法
变量排序在贝叶斯网络的归纳中起着重要的作用。以前的文献表明,当从数据中学习贝叶斯网络结构时,使用遗传/进化算法(EAs)来处理VO是值得追求的。本文提出了一种新的交叉算子,称为随机多点交叉算子(RMX),用于变量排序进化算法(VOEA)。将VOEA得到的经验结果与VOGA(可变排序遗传算法)得到的结果进行了比较,表明VO质量和诱导BN结构得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信