HOT: heuristics for oblique trees

V. Iyengar
{"title":"HOT: heuristics for oblique trees","authors":"V. Iyengar","doi":"10.1109/TAI.1999.809771","DOIUrl":null,"url":null,"abstract":"This paper presents a new method (HOT) of generating oblique decision trees. Oblique trees have been shown to be useful tools for classification in some problem domains, producing accurate and intuitive solutions. The method can be incorporated into a variety of existing decision tree tools and the paper illustrates this with two very distinct tree generators. The key idea is a method of learning oblique vectors and using the corresponding families of hyperplanes orthogonal to these vectors to separate regions with distinct dominant classes. Experimental results indicate that the learnt oblique hyperplanes lead to compact and accurate oblique trees. HOT is simple and easy to incorporate into most decision tree packages, yet its results compare well with much more complex schemes for generating oblique trees.","PeriodicalId":194023,"journal":{"name":"Proceedings 11th International Conference on Tools with Artificial Intelligence","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1999.809771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents a new method (HOT) of generating oblique decision trees. Oblique trees have been shown to be useful tools for classification in some problem domains, producing accurate and intuitive solutions. The method can be incorporated into a variety of existing decision tree tools and the paper illustrates this with two very distinct tree generators. The key idea is a method of learning oblique vectors and using the corresponding families of hyperplanes orthogonal to these vectors to separate regions with distinct dominant classes. Experimental results indicate that the learnt oblique hyperplanes lead to compact and accurate oblique trees. HOT is simple and easy to incorporate into most decision tree packages, yet its results compare well with much more complex schemes for generating oblique trees.
HOT:斜树的启发式
本文提出了一种生成斜决策树的新方法(HOT)。斜向树已被证明是一些问题领域的有用分类工具,产生准确和直观的解决方案。该方法可以整合到各种现有的决策树工具中,本文用两个非常不同的树生成器来说明这一点。关键思想是学习斜向量的方法,并使用与这些向量正交的相应超平面族来分离具有不同优势类的区域。实验结果表明,学习到的斜超平面可以得到紧凑、精确的斜树。HOT简单且容易合并到大多数决策树包中,但是它的结果与生成斜树的更复杂的方案相比要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信