Crowd-Sourced Procedural Animation Optimisation: Comparing Desktop and VR Behaviour

Gareth Henshall, W. Teahan, L. A. Cenydd
{"title":"Crowd-Sourced Procedural Animation Optimisation: Comparing Desktop and VR Behaviour","authors":"Gareth Henshall, W. Teahan, L. A. Cenydd","doi":"10.1109/CW.2017.52","DOIUrl":null,"url":null,"abstract":"Procedural animation systems are capable of synthesising life-like organic motion automatically. However due to extensive parameterisation, tuning these systems can be very difficult. Not only are there potentially hundreds of interlinked parameters, the resultant animation can be very subjective and the process is difficult to automate effectively.In this paper we describe a crowd-sourced approach to procedural animation parameter optimisation using genetic algorithms. We test our approach by asking users to interactively rate a population of virtual dolphins to a prescribed behavioural criteria. Our results show that within a few generations a group of users can successfully tune the system toward a desired behaviour.Our secondary motivation is to investigate if there are differences in animation and behavioural preference between observations made using a standard desktop monitor and those made using Virtual Reality (VR). We describe a study where users tuned two sets of dolphin animation systems in parallel, one using a normal monitor and another using an Oculus Rift. Our results indicate that being immersed in VR leads to some key differences in preferred behaviour.","PeriodicalId":309728,"journal":{"name":"2017 International Conference on Cyberworlds (CW)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Cyberworlds (CW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2017.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Procedural animation systems are capable of synthesising life-like organic motion automatically. However due to extensive parameterisation, tuning these systems can be very difficult. Not only are there potentially hundreds of interlinked parameters, the resultant animation can be very subjective and the process is difficult to automate effectively.In this paper we describe a crowd-sourced approach to procedural animation parameter optimisation using genetic algorithms. We test our approach by asking users to interactively rate a population of virtual dolphins to a prescribed behavioural criteria. Our results show that within a few generations a group of users can successfully tune the system toward a desired behaviour.Our secondary motivation is to investigate if there are differences in animation and behavioural preference between observations made using a standard desktop monitor and those made using Virtual Reality (VR). We describe a study where users tuned two sets of dolphin animation systems in parallel, one using a normal monitor and another using an Oculus Rift. Our results indicate that being immersed in VR leads to some key differences in preferred behaviour.
众包程序动画优化:比较桌面和VR行为
程序动画系统能够自动合成类似生命的有机运动。然而,由于广泛的参数化,调优这些系统可能非常困难。不仅可能有数百个相互关联的参数,生成的动画可能非常主观,而且很难有效地自动化。在本文中,我们描述了一种使用遗传算法进行程序动画参数优化的众包方法。我们通过让用户根据规定的行为标准对一群虚拟海豚进行交互式评分来测试我们的方法。我们的结果表明,在几代人的时间内,一组用户可以成功地将系统调整到期望的行为。我们的第二个动机是调查使用标准桌面显示器和使用虚拟现实(VR)进行的观察之间是否存在动画和行为偏好的差异。我们描述了一项研究,用户并行调整两套海豚动画系统,一套使用普通显示器,另一套使用Oculus Rift。我们的研究结果表明,沉浸在虚拟现实中会导致偏好行为的一些关键差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信