Using Word Embedding to Enable Semantic Queries in Relational Databases

R. Bordawekar, O. Shmueli
{"title":"Using Word Embedding to Enable Semantic Queries in Relational Databases","authors":"R. Bordawekar, O. Shmueli","doi":"10.1145/3076246.3076251","DOIUrl":null,"url":null,"abstract":"We investigate opportunities for exploiting Artificial Intelligence (AI) techniques for enhancing capabilities of relational databases. In particular, we explore applications of Natural Language Processing (NLP) techniques to endow relational databases with capabilities that were very hard to realize in practice. We apply an unsupervised neural-network based NLP idea, Distributed Representation via Word Embedding, to extract latent information from a relational table. The word embedding model is based on meaningful textual view of a relational database and captures inter-/intra-attribute relationships between database tokens. For each database token, the model includes a vector that encodes these contextual semantic relationships. These vectors enable processing a new class of SQL-based business intelligence queries called cognitive intelligence (CI) queries that use the generated vectors to analyze contextual semantic relationships between database tokens. The cognitive capabilities enable complex queries such as semantic matching, reasoning queries such as analogies, predictive queries using entities not present in a database, and using knowledge from external sources.","PeriodicalId":118931,"journal":{"name":"Proceedings of the 1st Workshop on Data Management for End-to-End Machine Learning","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on Data Management for End-to-End Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3076246.3076251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

We investigate opportunities for exploiting Artificial Intelligence (AI) techniques for enhancing capabilities of relational databases. In particular, we explore applications of Natural Language Processing (NLP) techniques to endow relational databases with capabilities that were very hard to realize in practice. We apply an unsupervised neural-network based NLP idea, Distributed Representation via Word Embedding, to extract latent information from a relational table. The word embedding model is based on meaningful textual view of a relational database and captures inter-/intra-attribute relationships between database tokens. For each database token, the model includes a vector that encodes these contextual semantic relationships. These vectors enable processing a new class of SQL-based business intelligence queries called cognitive intelligence (CI) queries that use the generated vectors to analyze contextual semantic relationships between database tokens. The cognitive capabilities enable complex queries such as semantic matching, reasoning queries such as analogies, predictive queries using entities not present in a database, and using knowledge from external sources.
在关系数据库中使用词嵌入实现语义查询
我们研究了利用人工智能(AI)技术来增强关系数据库能力的机会。特别是,我们探索了自然语言处理(NLP)技术的应用,以赋予关系数据库在实践中很难实现的功能。我们采用了一种基于无监督神经网络的NLP思想,即通过词嵌入的分布式表示,从关系表中提取潜在信息。词嵌入模型基于关系数据库的有意义的文本视图,并捕获数据库令牌之间的属性间/属性内关系。对于每个数据库令牌,该模型包括一个对这些上下文语义关系进行编码的向量。这些向量支持处理一类新的基于sql的业务智能查询,称为认知智能(CI)查询,这些查询使用生成的向量来分析数据库令牌之间的上下文语义关系。认知功能支持复杂查询(如语义匹配)、推理查询(如类比)、使用数据库中不存在的实体的预测查询以及使用来自外部源的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信