Automatic Summarizing the News from Inform.kz by Using Natural Language Processing Tools

B. Kynabay, Aimoldir Aldabergen, A. Zhamanov
{"title":"Automatic Summarizing the News from Inform.kz by Using Natural Language Processing Tools","authors":"B. Kynabay, Aimoldir Aldabergen, A. Zhamanov","doi":"10.1109/SIST50301.2021.9465885","DOIUrl":null,"url":null,"abstract":"The rapid rise of the information on the web brought up new problems of data access and processing. Therefore there is a need for tools that will help to overcome the problem of management and handling the Big Data in a quick manner. The primary goal of this work is to propose an efficient method for automatic text summarization by using Natural Language Processing (NLP) and Machine Learning (ML) techniques. This research introduces an abrupt, easily understandable and uncomplicated implementation of this method via overusing Python programming language. Efficient performance is necessary in web search tasks where an enormous of unstructured data need to be summarized very quickly. The novelty of the work is that text summarization is implemented on Kazakh texts. Extractive summarization uses new, keywords focused, approach. Contribution of the work is manually created stop words used for text summarization specifically for Kazakh language and dataset constructed by scraping news from country’s largest international news portal www.inform.kz. State-of-the-art results of the work show that it is possible to implement automatic text summarization for Kazakh language.","PeriodicalId":318915,"journal":{"name":"2021 IEEE International Conference on Smart Information Systems and Technologies (SIST)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Smart Information Systems and Technologies (SIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIST50301.2021.9465885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The rapid rise of the information on the web brought up new problems of data access and processing. Therefore there is a need for tools that will help to overcome the problem of management and handling the Big Data in a quick manner. The primary goal of this work is to propose an efficient method for automatic text summarization by using Natural Language Processing (NLP) and Machine Learning (ML) techniques. This research introduces an abrupt, easily understandable and uncomplicated implementation of this method via overusing Python programming language. Efficient performance is necessary in web search tasks where an enormous of unstructured data need to be summarized very quickly. The novelty of the work is that text summarization is implemented on Kazakh texts. Extractive summarization uses new, keywords focused, approach. Contribution of the work is manually created stop words used for text summarization specifically for Kazakh language and dataset constructed by scraping news from country’s largest international news portal www.inform.kz. State-of-the-art results of the work show that it is possible to implement automatic text summarization for Kazakh language.
自动汇总新闻从通知。kz使用自然语言处理工具
随着网络信息量的迅速增长,数据的访问和处理也出现了新的问题。因此,需要一种工具来帮助克服快速管理和处理大数据的问题。本工作的主要目标是提出一种利用自然语言处理(NLP)和机器学习(ML)技术进行自动文本摘要的有效方法。本研究通过过度使用Python编程语言,介绍了一种突兀、易懂、简单的方法实现。高效的性能对于需要快速总结大量非结构化数据的web搜索任务是必要的。该工作的新颖之处在于对哈萨克语文本进行了文本摘要。提取摘要采用了新的、以关键词为重点的方法。该工作的贡献是手动创建用于文本摘要的停止词,特别是针对哈萨克语和通过从该国最大的国际新闻门户www.inform.kz抓取新闻构建的数据集。最新的工作结果表明,实现哈萨克语文本自动摘要是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信