Seizure Detection Using Gilbert’s Algorithm

Abdel-Malik M. Sabreen, Adel A. Samir, L. A. ElMahdy, Mima H. Ibrahim, M. H. Tawfik, Omneia O. ElShaer, H. Mostafa
{"title":"Seizure Detection Using Gilbert’s Algorithm","authors":"Abdel-Malik M. Sabreen, Adel A. Samir, L. A. ElMahdy, Mima H. Ibrahim, M. H. Tawfik, Omneia O. ElShaer, H. Mostafa","doi":"10.1109/ICM.2018.8704083","DOIUrl":null,"url":null,"abstract":"Seizure detection for epileptic patients can be done using Support Vector Machines (SVMs). SVMs are a well- established method in classification between seizure and nonseizure points. One of the SVM trainers is Gilbert’s Algorithm. This paper elaborates Gilbert’s Algorithm role in training SVM to succeed in performing seizure detection. FPGA is used to accelerate the SVM training because of its reconfigurability. The reached results are highlighted and discussed as well as the used power and resources.","PeriodicalId":305356,"journal":{"name":"2018 30th International Conference on Microelectronics (ICM)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2018.8704083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Seizure detection for epileptic patients can be done using Support Vector Machines (SVMs). SVMs are a well- established method in classification between seizure and nonseizure points. One of the SVM trainers is Gilbert’s Algorithm. This paper elaborates Gilbert’s Algorithm role in training SVM to succeed in performing seizure detection. FPGA is used to accelerate the SVM training because of its reconfigurability. The reached results are highlighted and discussed as well as the used power and resources.
用吉尔伯特算法检测癫痫
支持向量机(svm)可以用于癫痫患者的发作检测。支持向量机是一个很好的方法之间的分类癫痫发作和非发作点。其中一个支持向量机训练器是吉尔伯特算法。本文阐述了Gilbert算法在训练支持向量机以成功执行癫痫检测中的作用。利用FPGA的可重构性,提高了SVM的训练速度。强调并讨论了所取得的成果以及所使用的功率和资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信