Out-of-Distribution Detection for Radar-based Gesture Recognition Using Metric-Learning

Thomas Stadelmayer, Lorenzo Servadei, Avik Santra, R. Weigel, F. Lurz
{"title":"Out-of-Distribution Detection for Radar-based Gesture Recognition Using Metric-Learning","authors":"Thomas Stadelmayer, Lorenzo Servadei, Avik Santra, R. Weigel, F. Lurz","doi":"10.1109/RWS55624.2023.10046325","DOIUrl":null,"url":null,"abstract":"The paper addresses the question how and to what extent metric learning can be beneficial for reducing the false alarm rate in radar-based hand gesture recognition systems. To this end, we evaluate different metric learning approaches for out-of-distribution or unknown motion detection. We found that metric learning can help to significantly increase the out-of-distribution capabilities of the network. We further investigated what conditions must be met for metric learning to work well, and found that the composition of the data set for known gestures has a large influence on the out-of-distribution detection rate.","PeriodicalId":110742,"journal":{"name":"2023 IEEE Radio and Wireless Symposium (RWS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radio and Wireless Symposium (RWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS55624.2023.10046325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper addresses the question how and to what extent metric learning can be beneficial for reducing the false alarm rate in radar-based hand gesture recognition systems. To this end, we evaluate different metric learning approaches for out-of-distribution or unknown motion detection. We found that metric learning can help to significantly increase the out-of-distribution capabilities of the network. We further investigated what conditions must be met for metric learning to work well, and found that the composition of the data set for known gestures has a large influence on the out-of-distribution detection rate.
基于度量学习的雷达手势识别的分布外检测
本文讨论了度量学习如何以及在多大程度上有助于降低基于雷达的手势识别系统中的误报率。为此,我们评估了用于分布外或未知运动检测的不同度量学习方法。我们发现度量学习可以显著提高网络的分布外能力。我们进一步研究了度量学习必须满足的条件,并发现已知手势的数据集的组成对分布外检测率有很大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信