HATSDF SLAM – Hardware-accelerated TSDF SLAM for Reconfigurable SoCs

Marc Eisoldt, M. Flottmann, Julian Gaal, Pascal Buschermöhle, Steffen Hinderink, Malte Hillmann, Adrian Nitschmann, Patrick Hoffmann, T. Wiemann, Mario Porrmann
{"title":"HATSDF SLAM – Hardware-accelerated TSDF SLAM for Reconfigurable SoCs","authors":"Marc Eisoldt, M. Flottmann, Julian Gaal, Pascal Buschermöhle, Steffen Hinderink, Malte Hillmann, Adrian Nitschmann, Patrick Hoffmann, T. Wiemann, Mario Porrmann","doi":"10.1109/ecmr50962.2021.9568815","DOIUrl":null,"url":null,"abstract":"Simultaneous Localization and Mapping (SLAM) is one of the fundamental problems in autonomous robotics. Over the years, many approaches to solve this problem for 6D poses and 3D maps based on LiDAR sensors or depth cameras have been proposed. One of the main drawbacks of the solutions found in the literature is the required computational power and corresponding energy consumption. In this paper, we present an approach for LiDAR-based SLAM that maintains a global truncated signed distance function (TSDF) to represent the map. It is implemented on a System On Chip (SoC) with an integrated FPGA accelerator. The proposed system is able to track the position of a Velodyne VLP-16 LiDAR in real time, while maintaining a global TSDF map that can be used to create a polygonal map of the environment. We show that our implementation delivers competitive results compared to state-of-the-art algorithms while drastically reducing the power consumption compared to classical CPU or GPU-based methods.","PeriodicalId":200521,"journal":{"name":"2021 European Conference on Mobile Robots (ECMR)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ecmr50962.2021.9568815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Simultaneous Localization and Mapping (SLAM) is one of the fundamental problems in autonomous robotics. Over the years, many approaches to solve this problem for 6D poses and 3D maps based on LiDAR sensors or depth cameras have been proposed. One of the main drawbacks of the solutions found in the literature is the required computational power and corresponding energy consumption. In this paper, we present an approach for LiDAR-based SLAM that maintains a global truncated signed distance function (TSDF) to represent the map. It is implemented on a System On Chip (SoC) with an integrated FPGA accelerator. The proposed system is able to track the position of a Velodyne VLP-16 LiDAR in real time, while maintaining a global TSDF map that can be used to create a polygonal map of the environment. We show that our implementation delivers competitive results compared to state-of-the-art algorithms while drastically reducing the power consumption compared to classical CPU or GPU-based methods.
用于可重构soc的硬件加速TSDF SLAM
同时定位与映射(SLAM)是自主机器人的基本问题之一。多年来,人们提出了许多方法来解决基于激光雷达传感器或深度相机的6D姿势和3D地图的这个问题。在文献中发现的解决方案的主要缺点之一是所需的计算能力和相应的能量消耗。在本文中,我们提出了一种基于激光雷达的SLAM方法,该方法维护一个全局截断符号距离函数(TSDF)来表示地图。它是在集成FPGA加速器的片上系统(SoC)上实现的。该系统能够实时跟踪Velodyne VLP-16激光雷达的位置,同时维护全球TSDF地图,该地图可用于创建环境的多边形地图。我们表明,与最先进的算法相比,我们的实现提供了具有竞争力的结果,同时与传统的基于CPU或gpu的方法相比,大大降低了功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信