An O(log(N)) Algorithm View: Reliability Evaluation of Folded-crossed Hypercube in Terms of h-extra Edge-connectivity

Hengji Qiao, Mingzu Zhang, Wenhuan Ma, Xing Yang
{"title":"An O(log(N)) Algorithm View: Reliability Evaluation of Folded-crossed Hypercube in Terms of h-extra Edge-connectivity","authors":"Hengji Qiao, Mingzu Zhang, Wenhuan Ma, Xing Yang","doi":"10.1142/s0129626423500032","DOIUrl":null,"url":null,"abstract":"An interconnection network can be modelled as a connected graph [Formula: see text]. The reliability of interconnection networks is critical for multiprocessor systems. Several conditional edge-connectivities have been introduced in the past for accurately reflecting various realistic network situations, with the [Formula: see text]-extra edge-connectivity being one such conditional edge-connectivity. The [Formula: see text]-extra edge-connectivity of [Formula: see text], denoted by [Formula: see text], is the minimum cardinality of faulty edges whose deletion disconnects the graph [Formula: see text] with each resulting component containing at least [Formula: see text] processors. In general, for a connected graph [Formula: see text], determining whether the graph exists an [Formula: see text]-extra edge-cut is [Formula: see text]-hard. The folded-crossed hypercube [Formula: see text] is a variation of the crossed hypercube [Formula: see text] with [Formula: see text] processors. In this paper, after excavating the layer structure of folded-crossed hypercube, we investigate some recursive properties of [Formula: see text], based on some recursive properties, an effective [Formula: see text] algorithm of [Formula: see text]-extra edge-connectivity of folded-crossed hypercube is designed, which can determine the exact value and the [Formula: see text]-optimality of [Formula: see text] for each positive integer [Formula: see text]. Our results solve this problem thoroughly.","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129626423500032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An interconnection network can be modelled as a connected graph [Formula: see text]. The reliability of interconnection networks is critical for multiprocessor systems. Several conditional edge-connectivities have been introduced in the past for accurately reflecting various realistic network situations, with the [Formula: see text]-extra edge-connectivity being one such conditional edge-connectivity. The [Formula: see text]-extra edge-connectivity of [Formula: see text], denoted by [Formula: see text], is the minimum cardinality of faulty edges whose deletion disconnects the graph [Formula: see text] with each resulting component containing at least [Formula: see text] processors. In general, for a connected graph [Formula: see text], determining whether the graph exists an [Formula: see text]-extra edge-cut is [Formula: see text]-hard. The folded-crossed hypercube [Formula: see text] is a variation of the crossed hypercube [Formula: see text] with [Formula: see text] processors. In this paper, after excavating the layer structure of folded-crossed hypercube, we investigate some recursive properties of [Formula: see text], based on some recursive properties, an effective [Formula: see text] algorithm of [Formula: see text]-extra edge-connectivity of folded-crossed hypercube is designed, which can determine the exact value and the [Formula: see text]-optimality of [Formula: see text] for each positive integer [Formula: see text]. Our results solve this problem thoroughly.
O(log(N))算法视角:基于h-extra边连通性的折叠交叉超立方体可靠性评估
互连网络可以建模为连通图[公式:见正文]。互连网络的可靠性对多处理器系统至关重要。为了准确地反映各种现实网络情况,过去已经引入了几种条件边连接,其中[公式:见文本]-额外边连接就是这样一种条件边连接。[公式:见文]的[公式:见文]-额外边-连通性,用[公式:见文]表示,是错误边的最小基数,这些错误边的删除将图[公式:见文]与每个包含至少[公式:见文]处理器的结果组件断开连接。一般来说,对于连通图[公式:见文],确定图是否存在[公式:见文]-额外的边缘切割是[公式:见文]-很难。折叠交叉超立方体[公式:见文]是带有[公式:见文]处理器的交叉超立方体[公式:见文]的变体。本文在挖掘了折叠交叉超立方体的层结构后,研究了[公式:见文]的一些递归性质,在这些递归性质的基础上,设计了[公式:见文]-折叠交叉超立方体额外边连通性的有效[公式:见文]算法,该算法可以确定每个正整数[公式:见文]的精确值和[公式:见文]的最优性[公式:见文]。我们的研究结果彻底解决了这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信