Vinayaka : A Semi-Supervised Projected Clustering Method Using Differential Evolution

Satish Gajawada, Durga Toshniwal
{"title":"Vinayaka : A Semi-Supervised Projected Clustering Method Using Differential Evolution","authors":"Satish Gajawada, Durga Toshniwal","doi":"10.5121/IJSEA.2012.3406","DOIUrl":null,"url":null,"abstract":"Differential Evolution (DE) is an algorithm for evolutionary optimization. Clustering problems have been solved by using DE based clustering methods but these methods may fail to find clusters hidden in subspaces of high dimensional datasets.Subspace and projected clustering methodshave been proposed in literature to find subspace clusters that are present in subspaces of dataset. In this paper we propose VINAYAKA, a semi-supervised projected clustering method based on DE. In this method DE optimizes a hybrid cluster validation index. Subspa ce Clustering Quality Estimate index (SCQE index) is used for internal cluster validation and Gini indexgain is used for external cluster validationin the proposed hybrid cluster validation index.Proposed method is applied on Wisconsin breast cancer dataset.","PeriodicalId":434551,"journal":{"name":"International Journal of Software Engineering & Applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Software Engineering & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJSEA.2012.3406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Differential Evolution (DE) is an algorithm for evolutionary optimization. Clustering problems have been solved by using DE based clustering methods but these methods may fail to find clusters hidden in subspaces of high dimensional datasets.Subspace and projected clustering methodshave been proposed in literature to find subspace clusters that are present in subspaces of dataset. In this paper we propose VINAYAKA, a semi-supervised projected clustering method based on DE. In this method DE optimizes a hybrid cluster validation index. Subspa ce Clustering Quality Estimate index (SCQE index) is used for internal cluster validation and Gini indexgain is used for external cluster validationin the proposed hybrid cluster validation index.Proposed method is applied on Wisconsin breast cancer dataset.
一种基于差分进化的半监督投影聚类方法
差分进化(DE)是一种进化优化算法。基于DE的聚类方法已经解决了聚类问题,但这些方法可能无法找到隐藏在高维数据集子空间中的聚类。文献中提出了子空间聚类和投影聚类方法来寻找数据集子空间中存在的子空间聚类。本文提出了一种基于DE的半监督投影聚类方法VINAYAKA,该方法优化了一个混合聚类验证指标。在提出的混合聚类验证指标中,使用Subspa ce聚类质量估计指数(SCQE指数)进行内部聚类验证,使用Gini指数增益进行外部聚类验证。将该方法应用于威斯康星州乳腺癌数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信