A machine learning approach for finding hyperspectral endmembers

A. Banerjee, P. Burlina, Joshua B. Broadwater
{"title":"A machine learning approach for finding hyperspectral endmembers","authors":"A. Banerjee, P. Burlina, Joshua B. Broadwater","doi":"10.1109/IGARSS.2007.4423675","DOIUrl":null,"url":null,"abstract":"A support vector algorithm for detecting endmembers in a hyperspectral image is introduced. It is a novel method for finding the spectral convexities in a high-dimensional space which addresses several limitations of previous endmember methods. A new approach for estimating the number of endmembers using rate-distortion theory is also presented. It is based upon the observation that the endmembers form a set of basis vectors for the hyperspectral datacube using the linear mixture model. The result is a fully-automatic method for endmember detection. Experimental results using the Cuprite datacube are presented.","PeriodicalId":284711,"journal":{"name":"2007 IEEE International Geoscience and Remote Sensing Symposium","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2007.4423675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

A support vector algorithm for detecting endmembers in a hyperspectral image is introduced. It is a novel method for finding the spectral convexities in a high-dimensional space which addresses several limitations of previous endmember methods. A new approach for estimating the number of endmembers using rate-distortion theory is also presented. It is based upon the observation that the endmembers form a set of basis vectors for the hyperspectral datacube using the linear mixture model. The result is a fully-automatic method for endmember detection. Experimental results using the Cuprite datacube are presented.
一种寻找高光谱端元的机器学习方法
介绍了一种用于高光谱图像端元检测的支持向量算法。它是一种在高维空间中求谱凸性的新方法,解决了以往端元方法的一些局限性。提出了一种利用速率畸变理论估计端元数目的新方法。它是基于观察到的端元形成一组基向量的高光谱数据立方体使用线性混合模型。结果是一种全自动的端元检测方法。给出了使用Cuprite数据集的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信