Adaptive Takagi-Sugeno Fuzzy Model for Pneumatic Artificial Muscles

Xiuze Xia, Long Cheng
{"title":"Adaptive Takagi-Sugeno Fuzzy Model for Pneumatic Artificial Muscles","authors":"Xiuze Xia, Long Cheng","doi":"10.1109/ICACI52617.2021.9435870","DOIUrl":null,"url":null,"abstract":"Pneumatic artificial muscle (PAM) usually exhibits strong hysteresis nonlinearity and time-varying features that bring PAM modeling and control difficulties. In this paper, an adaptive Takagi-Sugeno (T-S) fuzzy model is established based on nonlinear auto-regression moving average with exogenous input (NARMAX) structure to describe PAM’s characteristics. Experiments show that compared with other phenomenology-based models, the presented model has lower predictive error and better adaptability. Finally, a model predictive controller is designed and validated to verify the adaptive T-S fuzzy model’s practicability.","PeriodicalId":382483,"journal":{"name":"2021 13th International Conference on Advanced Computational Intelligence (ICACI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI52617.2021.9435870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Pneumatic artificial muscle (PAM) usually exhibits strong hysteresis nonlinearity and time-varying features that bring PAM modeling and control difficulties. In this paper, an adaptive Takagi-Sugeno (T-S) fuzzy model is established based on nonlinear auto-regression moving average with exogenous input (NARMAX) structure to describe PAM’s characteristics. Experiments show that compared with other phenomenology-based models, the presented model has lower predictive error and better adaptability. Finally, a model predictive controller is designed and validated to verify the adaptive T-S fuzzy model’s practicability.
气动人工肌肉自适应Takagi-Sugeno模糊模型
气动人工肌肉具有较强的滞后、非线性和时变特性,给其建模和控制带来困难。本文基于非线性自回归带外源输入移动平均(NARMAX)结构,建立了自适应Takagi-Sugeno (T-S)模糊模型来描述PAM的特性。实验表明,与其他基于现象学的模型相比,该模型具有较低的预测误差和较好的适应性。最后,设计并验证了模型预测控制器,验证了自适应T-S模糊模型的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信