{"title":"Adaptive Takagi-Sugeno Fuzzy Model for Pneumatic Artificial Muscles","authors":"Xiuze Xia, Long Cheng","doi":"10.1109/ICACI52617.2021.9435870","DOIUrl":null,"url":null,"abstract":"Pneumatic artificial muscle (PAM) usually exhibits strong hysteresis nonlinearity and time-varying features that bring PAM modeling and control difficulties. In this paper, an adaptive Takagi-Sugeno (T-S) fuzzy model is established based on nonlinear auto-regression moving average with exogenous input (NARMAX) structure to describe PAM’s characteristics. Experiments show that compared with other phenomenology-based models, the presented model has lower predictive error and better adaptability. Finally, a model predictive controller is designed and validated to verify the adaptive T-S fuzzy model’s practicability.","PeriodicalId":382483,"journal":{"name":"2021 13th International Conference on Advanced Computational Intelligence (ICACI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI52617.2021.9435870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Pneumatic artificial muscle (PAM) usually exhibits strong hysteresis nonlinearity and time-varying features that bring PAM modeling and control difficulties. In this paper, an adaptive Takagi-Sugeno (T-S) fuzzy model is established based on nonlinear auto-regression moving average with exogenous input (NARMAX) structure to describe PAM’s characteristics. Experiments show that compared with other phenomenology-based models, the presented model has lower predictive error and better adaptability. Finally, a model predictive controller is designed and validated to verify the adaptive T-S fuzzy model’s practicability.