Measuring Belief Dynamics on Twitter

J. Introne
{"title":"Measuring Belief Dynamics on Twitter","authors":"J. Introne","doi":"10.48550/arXiv.2211.11947","DOIUrl":null,"url":null,"abstract":"There is growing concern about misinformation and the role online media plays in social polarization. Analyzing belief dynamics is one way to enhance our understanding of these problems. Existing analytical tools, such as sur-vey research or stance detection, lack the power to corre-late contextual factors with population-level changes in belief dynamics. In this exploratory study, I present the Belief Landscape Framework, which uses data about people’s professed beliefs in an online setting to measure belief dynamics with more temporal granularity than previous methods. I apply the approach to conversations about climate change on Twitter and provide initial validation by comparing the method’s output to a set of hypotheses drawn from the literature on dynamic systems. My analysis indicates that the method is relatively robust to different parameter settings, and results suggest that 1) there are many stable configurations of belief on the polarizing issue of climate change and 2) that people move in predictable ways around these points. The method paves the way for more powerful tools that can be used to understand how the modern digital media eco-system impacts collective belief dynamics and what role misinformation plays in that process.","PeriodicalId":175641,"journal":{"name":"International Conference on Web and Social Media","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Web and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.11947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

There is growing concern about misinformation and the role online media plays in social polarization. Analyzing belief dynamics is one way to enhance our understanding of these problems. Existing analytical tools, such as sur-vey research or stance detection, lack the power to corre-late contextual factors with population-level changes in belief dynamics. In this exploratory study, I present the Belief Landscape Framework, which uses data about people’s professed beliefs in an online setting to measure belief dynamics with more temporal granularity than previous methods. I apply the approach to conversations about climate change on Twitter and provide initial validation by comparing the method’s output to a set of hypotheses drawn from the literature on dynamic systems. My analysis indicates that the method is relatively robust to different parameter settings, and results suggest that 1) there are many stable configurations of belief on the polarizing issue of climate change and 2) that people move in predictable ways around these points. The method paves the way for more powerful tools that can be used to understand how the modern digital media eco-system impacts collective belief dynamics and what role misinformation plays in that process.
在Twitter上测量信念动态
人们越来越担心虚假信息和网络媒体在社会两极分化中所扮演的角色。分析信念动力学是增强我们对这些问题理解的一种方法。现有的分析工具,如调查研究或立场检测,缺乏将背景因素与信仰动态的人口水平变化联系起来的能力。在这项探索性研究中,我提出了信念景观框架,它使用人们在在线环境中自称信仰的数据来测量信仰动态,比以前的方法具有更多的时间粒度。我将该方法应用于Twitter上关于气候变化的对话,并通过将该方法的输出与从动态系统文献中得出的一组假设进行比较,提供初步验证。我的分析表明,该方法对不同的参数设置相对稳健,结果表明:1)在气候变化的两极分化问题上存在许多稳定的信念配置;2)人们在这些点周围以可预测的方式移动。该方法为更强大的工具铺平了道路,这些工具可以用来理解现代数字媒体生态系统如何影响集体信仰动态,以及错误信息在这一过程中扮演的角色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信