Constructive finite-dimensional observer-based boundary control of stochastic parabolic PDEs

Pengfei Wang, R. Katz, E. Fridman
{"title":"Constructive finite-dimensional observer-based boundary control of stochastic parabolic PDEs","authors":"Pengfei Wang, R. Katz, E. Fridman","doi":"10.23919/ACC53348.2022.9867400","DOIUrl":null,"url":null,"abstract":"Recently, a constructive method for the finite-dimensional observer-based control of deterministic parabolic PDEs has been suggested by employing a modal decomposition approach. In the present paper, we aim to extend this method to the stochastic parabolic PDEs with nonlinear multiplicative noise. We consider the Neumann actuation and boundary measurement via dynamic extension. The controller dimension is defined by N0 unstable modes, whereas the observer may have a larger dimension N. We provide mean-square L2 stability analysis of the full-order closed-loop system leading to linear matrix inequality (LMI) conditions for finding N. We prove that the LMIs are always feasible for small enough noise intensity and large enough N. A numerical example demonstrates the efficiency of our method.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Recently, a constructive method for the finite-dimensional observer-based control of deterministic parabolic PDEs has been suggested by employing a modal decomposition approach. In the present paper, we aim to extend this method to the stochastic parabolic PDEs with nonlinear multiplicative noise. We consider the Neumann actuation and boundary measurement via dynamic extension. The controller dimension is defined by N0 unstable modes, whereas the observer may have a larger dimension N. We provide mean-square L2 stability analysis of the full-order closed-loop system leading to linear matrix inequality (LMI) conditions for finding N. We prove that the LMIs are always feasible for small enough noise intensity and large enough N. A numerical example demonstrates the efficiency of our method.
随机抛物型偏微分方程的构造有限维观测器边界控制
最近,利用模态分解方法提出了一种基于观测器的有限维确定性抛物型偏微分方程控制的构造方法。在本文中,我们的目标是将该方法推广到具有非线性乘性噪声的随机抛物型偏微分方程。我们考虑了诺伊曼驱动和边界测量的动态扩展。控制器的维数由N0个不稳定模态定义,而观测器的维数可能更大。我们提供了全阶闭环系统的均方L2稳定性分析,得出了寻找n的线性矩阵不等式(LMI)条件。我们证明了LMI在足够小的噪声强度和足够大的n下总是可行的。一个数值例子证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信