FuseMe: Classification of sMRI images by fusion of Deep CNNs in 2D+ε projections

Karim Aderghal, J. Benois-Pineau, K. Afdel, G. Catheline
{"title":"FuseMe: Classification of sMRI images by fusion of Deep CNNs in 2D+ε projections","authors":"Karim Aderghal, J. Benois-Pineau, K. Afdel, G. Catheline","doi":"10.1145/3095713.3095749","DOIUrl":null,"url":null,"abstract":"The methods of Content-Based visual information indexing and retrieval penetrate into Healthcare and become popular in Computer-Aided Diagnosis. Multimedia in medical images means different imaging modalities, but also multiple views of the same physiological object, such as human brain. In this paper we propose1 a multi-projection fusion approach with CNNs for diagnostics of Alzheimer Disease. Instead of working with the whole brain volume, it fuses CNNs from each brain projection sagittal, coronal, and axial ingesting a 2D+ε limited volume we have previously proposed. Three binary classification tasks are considered separating Alzheimer Disease (AD) patients from Mild Cognitive Impairment (MCI) and Normal control Subject (NC). Two fusion methods on FC-layer and on the single-projection CNN output show better performances, up to 91% and show competitive results with the SOA using heavier algorithmic chains.","PeriodicalId":310224,"journal":{"name":"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3095713.3095749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

The methods of Content-Based visual information indexing and retrieval penetrate into Healthcare and become popular in Computer-Aided Diagnosis. Multimedia in medical images means different imaging modalities, but also multiple views of the same physiological object, such as human brain. In this paper we propose1 a multi-projection fusion approach with CNNs for diagnostics of Alzheimer Disease. Instead of working with the whole brain volume, it fuses CNNs from each brain projection sagittal, coronal, and axial ingesting a 2D+ε limited volume we have previously proposed. Three binary classification tasks are considered separating Alzheimer Disease (AD) patients from Mild Cognitive Impairment (MCI) and Normal control Subject (NC). Two fusion methods on FC-layer and on the single-projection CNN output show better performances, up to 91% and show competitive results with the SOA using heavier algorithmic chains.
FuseMe:基于2D+ε投影的深度cnn融合的sMRI图像分类
基于内容的可视化信息索引与检索方法深入到医疗卫生领域,在计算机辅助诊断领域得到广泛应用。医学图像中的多媒体意味着不同的成像方式,也意味着同一生理对象(如人脑)的多个视图。本文提出了一种基于cnn的多投影融合方法用于阿尔茨海默病的诊断。它不是处理整个脑容量,而是融合来自每个脑投影的cnn,矢状面,冠状面和轴向,摄取我们之前提出的2D+ε有限体积。采用三种二元分类任务将阿尔茨海默病(AD)患者与轻度认知障碍(MCI)和正常对照(NC)区分。在fc层和单投影CNN输出上的两种融合方法表现出更好的性能,达到91%,与使用更重算法链的SOA具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信