Towards a Computational Cognitive Neuroscience Model of Creativity

Hugo Chateau-Laurent, F. Alexandre
{"title":"Towards a Computational Cognitive Neuroscience Model of Creativity","authors":"Hugo Chateau-Laurent, F. Alexandre","doi":"10.1109/ICCICC53683.2021.9811309","DOIUrl":null,"url":null,"abstract":"Recent progress in AI has expanded the boundaries of the cognitive functions that can be simulated, but creativity remains a challenge. Neuroscience sheds light on its mechanisms and its tight relationship with episodic memory and cognitive control, while machine learning provides preliminary models of these mechanisms. We present these lines of research and explain how they can be exploited in the domain of computational creativity in order to further expand the capabilities of AI.","PeriodicalId":101653,"journal":{"name":"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICC53683.2021.9811309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent progress in AI has expanded the boundaries of the cognitive functions that can be simulated, but creativity remains a challenge. Neuroscience sheds light on its mechanisms and its tight relationship with episodic memory and cognitive control, while machine learning provides preliminary models of these mechanisms. We present these lines of research and explain how they can be exploited in the domain of computational creativity in order to further expand the capabilities of AI.
迈向创造力的计算认知神经科学模型
人工智能的最新进展扩大了可以模拟的认知功能的界限,但创造力仍然是一个挑战。神经科学揭示了其机制及其与情景记忆和认知控制的紧密关系,而机器学习则提供了这些机制的初步模型。我们介绍了这些研究方向,并解释了如何在计算创造力领域利用它们,以进一步扩展人工智能的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信