Exchange Rate Prediction using ANN and Deep Learning Methodologies: A Systematic Review

Manaswinee Madhumita Panda, S. Panda, P. Pattnaik
{"title":"Exchange Rate Prediction using ANN and Deep Learning Methodologies: A Systematic Review","authors":"Manaswinee Madhumita Panda, S. Panda, P. Pattnaik","doi":"10.1109/Indo-TaiwanICAN48429.2020.9181351","DOIUrl":null,"url":null,"abstract":"Advance study about exchange rate prediction is reviewed in this paper. Different proposed new methods forforecast exchange rate prediction, from 2000 to 2019 are taken into consideration. In the protected period within the examine, the effects acquired observed some new proposed models like Artificial Neural Network (ANN), Functional Link Artificial Neural Network (FLANN), Hidden Markov Model (HMM), Support Vector Regression (SVR), Auto Regressive (AR) models are displayed in this paper. But, some of the proposed new neural networkmodelforforecastingthatconsideredtheoreticalsupport and a systematic procedure in the construction of model. This leadstoconveyingofnewmodelsofdeepneuralnetwork.","PeriodicalId":171125,"journal":{"name":"2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Indo-TaiwanICAN48429.2020.9181351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Advance study about exchange rate prediction is reviewed in this paper. Different proposed new methods forforecast exchange rate prediction, from 2000 to 2019 are taken into consideration. In the protected period within the examine, the effects acquired observed some new proposed models like Artificial Neural Network (ANN), Functional Link Artificial Neural Network (FLANN), Hidden Markov Model (HMM), Support Vector Regression (SVR), Auto Regressive (AR) models are displayed in this paper. But, some of the proposed new neural networkmodelforforecastingthatconsideredtheoreticalsupport and a systematic procedure in the construction of model. This leadstoconveyingofnewmodelsofdeepneuralnetwork.
使用人工神经网络和深度学习方法的汇率预测:系统回顾
本文对汇率预测的研究进展进行了综述。本文考虑了2000年至2019年不同的汇率预测新方法。在研究的保护期内,本文展示了人工神经网络(ANN)、功能链接人工神经网络(FLANN)、隐马尔可夫模型(HMM)、支持向量回归(SVR)、自回归(AR)模型等新提出的模型所取得的效果。但是,目前提出的一些新的神经网络预测模型缺乏理论支持,并且在模型构建过程中需要一个系统的步骤。这leadstoconveyingofnewmodelsofdeepneuralnetwork。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信