A Constrained Linearly Involved Generalized Moreau Enhanced Model and Its Proximal Splitting Algorithm

Wataru Yata, M. Yamagishi, I. Yamada
{"title":"A Constrained Linearly Involved Generalized Moreau Enhanced Model and Its Proximal Splitting Algorithm","authors":"Wataru Yata, M. Yamagishi, I. Yamada","doi":"10.1109/mlsp52302.2021.9596347","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a constrained LiGME (cLiGME) model by incorporating newly multiple convex constraints into the LiGME (Linearly involved Generalized Moreau Enhanced) model which was established recently for many scenarios in sparsity-rank-aware least squares estimation. The cLiGME model can exploit flexibly a priori knowledge on the target to be estimated while keeping the advantage of the LiGME model, i.e., mathematically sound mechanism for nonconvex enhancements of linearly involved convex regularizers. For the cLiGME model, we present a new proximal splitting type algorithm of guaranteed convergence to a global minimizer and demonstrate its effectiveness with a simple numerical experiment.","PeriodicalId":156116,"journal":{"name":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlsp52302.2021.9596347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a constrained LiGME (cLiGME) model by incorporating newly multiple convex constraints into the LiGME (Linearly involved Generalized Moreau Enhanced) model which was established recently for many scenarios in sparsity-rank-aware least squares estimation. The cLiGME model can exploit flexibly a priori knowledge on the target to be estimated while keeping the advantage of the LiGME model, i.e., mathematically sound mechanism for nonconvex enhancements of linearly involved convex regularizers. For the cLiGME model, we present a new proximal splitting type algorithm of guaranteed convergence to a global minimizer and demonstrate its effectiveness with a simple numerical experiment.
约束线性涉及广义Moreau增强模型及其近端分裂算法
在稀疏秩感知最小二乘估计中,我们将新的多个凸约束加入到最近建立的线性相关广义Moreau增强(linear involved Generalized Moreau Enhanced)模型中,提出了一种约束的LiGME (cLiGME)模型。cLiGME模型可以灵活地利用待估计目标的先验知识,同时保持了LiGME模型的优势,即线性相关凸正则器的非凸增强在数学上的良好机制。对于cLiGME模型,我们提出了一种新的保证收敛到全局最小值的近分裂型算法,并通过简单的数值实验证明了它的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信