Bayesian high-resolution reconstruction of low-resolution compressed video

R. Molina, A. Katsaggelos, J. Mateos, C. A. Segall
{"title":"Bayesian high-resolution reconstruction of low-resolution compressed video","authors":"R. Molina, A. Katsaggelos, J. Mateos, C. A. Segall","doi":"10.1109/ICIP.2001.958415","DOIUrl":null,"url":null,"abstract":"A method for simultaneously estimating the high-resolution frames and the corresponding motion field from a compressed low-resolution video sequence is presented. The algorithm incorporates knowledge of the spatio-temporal correlation between low and high-resolution images to estimate the original high-resolution sequence from the degraded low-resolution observation. Information from the encoder is also exploited, including the transmitted motion vectors, quantization tables, coding modes and quantizer scale factors. Simulations illustrate an improvement in the peak signal-to-noise ratio when compared with traditional interpolation techniques and are corroborated with visual results.","PeriodicalId":291827,"journal":{"name":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2001.958415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

A method for simultaneously estimating the high-resolution frames and the corresponding motion field from a compressed low-resolution video sequence is presented. The algorithm incorporates knowledge of the spatio-temporal correlation between low and high-resolution images to estimate the original high-resolution sequence from the degraded low-resolution observation. Information from the encoder is also exploited, including the transmitted motion vectors, quantization tables, coding modes and quantizer scale factors. Simulations illustrate an improvement in the peak signal-to-noise ratio when compared with traditional interpolation techniques and are corroborated with visual results.
低分辨率压缩视频的贝叶斯高分辨率重构
提出了一种从压缩的低分辨率视频序列中同时估计高分辨率帧和相应运动场的方法。该算法结合低分辨率和高分辨率图像之间的时空相关性知识,从退化的低分辨率观测中估计原始高分辨率序列。还利用了来自编码器的信息,包括传输的运动矢量、量化表、编码模式和量化器尺度因子。仿真结果表明,与传统插值方法相比,该方法的峰值信噪比得到了改善,并与视觉结果相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信