The Hubbard model in the canonical formulation

S. Burri, U. Wenger
{"title":"The Hubbard model in the canonical formulation","authors":"S. Burri, U. Wenger","doi":"10.22323/1.363.0249","DOIUrl":null,"url":null,"abstract":"We describe non-relativistic fermions on the lattice (Hubbard model) in the canonical formulation using transfer matrices in fixed fermion number sectors such that the partition function becomes fully factorized in time. By analytically integrating out the auxiliary Hubbard-Stratanovich field due to the four-fermion interaction, we express the system in terms of discrete, local fermion occupation numbers which are the only remaining degrees of freedom. We show the close relation to the fermion loop and the fermion bag formulation. One can prove that in 1+1 dimension the fermion sign problem is absent. Finally, we construct improved estimators for the ground state energy, 2-point functions, and for the chemical potential.","PeriodicalId":147987,"journal":{"name":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We describe non-relativistic fermions on the lattice (Hubbard model) in the canonical formulation using transfer matrices in fixed fermion number sectors such that the partition function becomes fully factorized in time. By analytically integrating out the auxiliary Hubbard-Stratanovich field due to the four-fermion interaction, we express the system in terms of discrete, local fermion occupation numbers which are the only remaining degrees of freedom. We show the close relation to the fermion loop and the fermion bag formulation. One can prove that in 1+1 dimension the fermion sign problem is absent. Finally, we construct improved estimators for the ground state energy, 2-point functions, and for the chemical potential.
哈伯德模型中的规范表述
我们利用固定费米子数扇区中的传递矩阵,在正则表达式中描述了格上的非相对论费米子(哈伯德模型),使得配分函数在时间上被完全分解。通过解析积分出由四费米子相互作用引起的辅助hubard - stratanovich场,我们用离散的、局部的费米子占据数来表示系统,这是唯一剩余的自由度。我们展示了与费米子环和费米子袋公式的密切关系。可以证明在1+1维中不存在费米子符号问题。最后,我们构造了基态能量、两点函数和化学势的改进估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信