Location Inference under Temporal Correlation

Yukun Dong, Yidan Hu, A. Aseeri, Depeng Li, Rui Zhang
{"title":"Location Inference under Temporal Correlation","authors":"Yukun Dong, Yidan Hu, A. Aseeri, Depeng Li, Rui Zhang","doi":"10.1109/ICCCN58024.2023.10230099","DOIUrl":null,"url":null,"abstract":"Location Based Services (LBSs) have become increasingly popular in the past decade, allowing mobile users to access location-dependent information and services. To protect user privacy while using LBSs, various Location Privacy Protection Mechanisms (LPPMs) have been proposed that obfuscate users' true locations through random perturbation. However, adversaries can still exploit the temporal correlation between a user's locations in multiple LBS queries to improve inference accuracy. In this paper, we introduce a novel location inference attack that strikes a good balance between inference accuracy and computational complexity by effectively exploiting temporal correlation. Simulation studies using synthetic and real datasets confirm the advantages of our proposed attack.","PeriodicalId":132030,"journal":{"name":"2023 32nd International Conference on Computer Communications and Networks (ICCCN)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 32nd International Conference on Computer Communications and Networks (ICCCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCN58024.2023.10230099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Location Based Services (LBSs) have become increasingly popular in the past decade, allowing mobile users to access location-dependent information and services. To protect user privacy while using LBSs, various Location Privacy Protection Mechanisms (LPPMs) have been proposed that obfuscate users' true locations through random perturbation. However, adversaries can still exploit the temporal correlation between a user's locations in multiple LBS queries to improve inference accuracy. In this paper, we introduce a novel location inference attack that strikes a good balance between inference accuracy and computational complexity by effectively exploiting temporal correlation. Simulation studies using synthetic and real datasets confirm the advantages of our proposed attack.
时间相关下的位置推断
基于位置的服务(lbs)在过去十年中变得越来越流行,它允许移动用户访问与位置相关的信息和服务。为了在使用lbs时保护用户隐私,人们提出了各种位置隐私保护机制(LPPMs),通过随机扰动来混淆用户的真实位置。然而,攻击者仍然可以利用多个LBS查询中用户位置之间的时间相关性来提高推理准确性。在本文中,我们引入了一种新的位置推理攻击,通过有效地利用时间相关性,在推理精度和计算复杂度之间取得了很好的平衡。利用合成数据集和真实数据集进行的仿真研究证实了我们所提出的攻击的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信