{"title":"GPU Enabled Serverless Computing Framework","authors":"T. Jun, Daeyoun Kang, Dohyeun Kim, Daeyoung Kim","doi":"10.1109/PDP2018.2018.00090","DOIUrl":null,"url":null,"abstract":"A new form of cloud computing, serverless computing, is drawing attention as a new way to design micro-services architectures. In a serverless computing environment, services are developed as service functional units. The function development environment of all serverless computing framework at present is CPU based. In this paper, we propose a GPU-supported serverless computing framework that can deploy services faster than existing serverless computing framework using CPU. Our core approach is to integrate the open source serverless computing framework with NVIDIA-Docker and deploy services based on the GPU support container. We have developed an API that connects the open source framework to the NVIDIA-Docker and commands that enable GPU programming. In our experiments, we measured the performance of the framework in various environments. As a result, developers who want to develop services through the framework can deploy high-performance micro services and developers who want to run deep learning programs without a GPU environment can run code on remote GPUs with little performance degradation.","PeriodicalId":333367,"journal":{"name":"2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP2018.2018.00090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
A new form of cloud computing, serverless computing, is drawing attention as a new way to design micro-services architectures. In a serverless computing environment, services are developed as service functional units. The function development environment of all serverless computing framework at present is CPU based. In this paper, we propose a GPU-supported serverless computing framework that can deploy services faster than existing serverless computing framework using CPU. Our core approach is to integrate the open source serverless computing framework with NVIDIA-Docker and deploy services based on the GPU support container. We have developed an API that connects the open source framework to the NVIDIA-Docker and commands that enable GPU programming. In our experiments, we measured the performance of the framework in various environments. As a result, developers who want to develop services through the framework can deploy high-performance micro services and developers who want to run deep learning programs without a GPU environment can run code on remote GPUs with little performance degradation.