{"title":"A scalable solution to n-bit parity via artificial development","authors":"Tüze Kuyucu, M. Trefzer, J. Miller, A. Tyrrell","doi":"10.1109/RME.2009.5201348","DOIUrl":null,"url":null,"abstract":"The design of electronic circuits with model-free heuristics like evolutionary algorithms is an attractive concept and field of research. Although successful to a point, evolution of circuits that are bigger than a 3-bit multiplier is hindered by the scalability problem. Modelling the biological development as an artificial genotype-phenotype mapping mechanism has been shown to improve scalability on some simple circuit problems and pattern formations. As a candidate solution to the scalability issue, an artificial developmental system is presented.","PeriodicalId":245992,"journal":{"name":"2009 Ph.D. Research in Microelectronics and Electronics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ph.D. Research in Microelectronics and Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RME.2009.5201348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The design of electronic circuits with model-free heuristics like evolutionary algorithms is an attractive concept and field of research. Although successful to a point, evolution of circuits that are bigger than a 3-bit multiplier is hindered by the scalability problem. Modelling the biological development as an artificial genotype-phenotype mapping mechanism has been shown to improve scalability on some simple circuit problems and pattern formations. As a candidate solution to the scalability issue, an artificial developmental system is presented.