BP-based learning system with analog neuro-LSI

Y. Todo, T. Takasaki, M. Yoshida, T. Yoneyama, H. Asai
{"title":"BP-based learning system with analog neuro-LSI","authors":"Y. Todo, T. Takasaki, M. Yoshida, T. Yoneyama, H. Asai","doi":"10.1109/MWSCAS.2001.986286","DOIUrl":null,"url":null,"abstract":"This paper describes the fabrication of analog neuro-LSI and a learning system with the neuro-LSI, which uses the output of neuro-LSI for learning. First, the design and fabrication of the multi-layer neural network are shown. Next, the construction of learning system with Labview is described and the system performance is estimated. Finally, we show that this system can cancel the fluctuation of analog LSIs and is useful and practical.","PeriodicalId":403026,"journal":{"name":"Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems. MWSCAS 2001 (Cat. No.01CH37257)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems. MWSCAS 2001 (Cat. No.01CH37257)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2001.986286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes the fabrication of analog neuro-LSI and a learning system with the neuro-LSI, which uses the output of neuro-LSI for learning. First, the design and fabrication of the multi-layer neural network are shown. Next, the construction of learning system with Labview is described and the system performance is estimated. Finally, we show that this system can cancel the fluctuation of analog LSIs and is useful and practical.
基于bp的模拟神经- lsi学习系统
本文介绍了模拟神经大规模集成电路的制作和利用神经大规模集成电路输出进行学习的学习系统。首先介绍了多层神经网络的设计与制作。其次,描述了利用Labview构建学习系统的过程,并对系统性能进行了估计。最后,我们证明了该系统可以消除模拟电路的波动,具有实用性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信