Document Image Binarisation Using Markov Field Model

T. Lelore, F. Bouchara
{"title":"Document Image Binarisation Using Markov Field Model","authors":"T. Lelore, F. Bouchara","doi":"10.1109/ICDAR.2009.117","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach for the binarization of seriously degraded manuscript. We introduce a new technique based on a Markov Random Field (MRF) model of the document. Depending on the available information, the model parameters (clique potentials) are learned from training data or computed using heuristics. The observation model is estimated thanks to an expectation maximization (EM) algorithm which extracts text and paper’s features. The performance of the proposition is evaluated on several types of degraded document images where considerable background noise or variation in contrast and illumination exist.","PeriodicalId":433762,"journal":{"name":"2009 10th International Conference on Document Analysis and Recognition","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2009.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

This paper presents a new approach for the binarization of seriously degraded manuscript. We introduce a new technique based on a Markov Random Field (MRF) model of the document. Depending on the available information, the model parameters (clique potentials) are learned from training data or computed using heuristics. The observation model is estimated thanks to an expectation maximization (EM) algorithm which extracts text and paper’s features. The performance of the proposition is evaluated on several types of degraded document images where considerable background noise or variation in contrast and illumination exist.
基于马尔可夫场模型的文档图像二值化
提出了一种对严重退化手稿进行二值化处理的新方法。我们介绍了一种基于马尔可夫随机场(MRF)模型的新技术。根据可用信息,从训练数据中学习模型参数(团势)或使用启发式方法计算。利用期望最大化算法提取文本和纸张的特征,对观测模型进行估计。该命题的性能在几种退化的文档图像上进行评估,其中存在相当大的背景噪声或对比度和照明的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信