Discretization of SO(3) using recursive tesseract subdivision

G. Kurz, F. Pfaff, U. Hanebeck
{"title":"Discretization of SO(3) using recursive tesseract subdivision","authors":"G. Kurz, F. Pfaff, U. Hanebeck","doi":"10.1109/MFI.2017.8170406","DOIUrl":null,"url":null,"abstract":"The group of rotations in three dimensions SO(3) plays a crucial role in applications ranging from robotics and aeronautics to computer graphics. Rotations have three degrees of freedom, but representing rotations is a nontrivial matter and different methods, such as Euler angles, quaternions, rotation matrices, and Rodrigues vectors are commonly used. Unfortunately, none of these representations allows easy discretization of orientations on evenly spaced grids. We present a novel discretization method that is based on a quaternion representation in conjunction with a recursive subdivision scheme of the four-dimensional hypercube, also known as the tesseract.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The group of rotations in three dimensions SO(3) plays a crucial role in applications ranging from robotics and aeronautics to computer graphics. Rotations have three degrees of freedom, but representing rotations is a nontrivial matter and different methods, such as Euler angles, quaternions, rotation matrices, and Rodrigues vectors are commonly used. Unfortunately, none of these representations allows easy discretization of orientations on evenly spaced grids. We present a novel discretization method that is based on a quaternion representation in conjunction with a recursive subdivision scheme of the four-dimensional hypercube, also known as the tesseract.
用递推tesseract细分的SO(3)离散化
三维SO(3)中的旋转组在从机器人、航空到计算机图形学的应用中起着至关重要的作用。旋转有三个自由度,但表示旋转是一件很重要的事情,不同的方法,如欧拉角、四元数、旋转矩阵和罗德里格斯向量是常用的。不幸的是,这些表示都不允许在均匀间隔的网格上容易地离散方向。我们提出了一种新的离散化方法,该方法基于四元数表示,并结合了四维超立方体(也称为tesseract)的递归细分方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信