Improved Time-Frequency Representation for Non-stationary Vibrations of Slow Rotating Machinery

C. Peeters, A. Jakobsson, J. Antoni, J. Helsen
{"title":"Improved Time-Frequency Representation for Non-stationary Vibrations of Slow Rotating Machinery","authors":"C. Peeters, A. Jakobsson, J. Antoni, J. Helsen","doi":"10.36001/phme.2022.v7i1.3363","DOIUrl":null,"url":null,"abstract":"The short-time Fourier transform (STFT) is a staple analysis tool for vibration signal processing due to it being a robust, non-parametric, and computationally efficient technique to analyze non-stationary signals. However, despite these beneficial properties, the STFT suffers from high variance, high sidelobes, and a low resolution. This paper investigates an alternative non-parametric method, namely the sliding-window iterative adaptive approach, to use for time-frequency representations of non-stationary vibrations. This method reduces the sidelobe levels and allows for high resolution estimates. The performance of the method is evaluated on both simulated and experimental vibration data of slow rotating machinery such as a multi-megawatt wind turbine gearbox. The results indicate significant benefits as compared to the STFT with regard to accuracy, readability, and versatility.","PeriodicalId":422825,"journal":{"name":"PHM Society European Conference","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHM Society European Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/phme.2022.v7i1.3363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The short-time Fourier transform (STFT) is a staple analysis tool for vibration signal processing due to it being a robust, non-parametric, and computationally efficient technique to analyze non-stationary signals. However, despite these beneficial properties, the STFT suffers from high variance, high sidelobes, and a low resolution. This paper investigates an alternative non-parametric method, namely the sliding-window iterative adaptive approach, to use for time-frequency representations of non-stationary vibrations. This method reduces the sidelobe levels and allows for high resolution estimates. The performance of the method is evaluated on both simulated and experimental vibration data of slow rotating machinery such as a multi-megawatt wind turbine gearbox. The results indicate significant benefits as compared to the STFT with regard to accuracy, readability, and versatility.
慢速旋转机械非平稳振动的改进时频表示
短时傅里叶变换(STFT)是一种鲁棒性、非参数性和计算效率高的非平稳信号分析技术,是振动信号处理的主要分析工具。然而,尽管有这些有益的特性,STFT仍然存在高方差、高副瓣和低分辨率的问题。本文研究了一种替代的非参数方法,即滑动窗口迭代自适应方法,用于非平稳振动的时频表示。这种方法降低了旁瓣电平,并允许高分辨率估计。通过多兆瓦级风力发电机齿轮箱等慢速旋转机械的模拟和实验振动数据,对该方法的性能进行了评价。结果表明,与STFT相比,在准确性、可读性和通用性方面有显著的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信