Learning-Free Iris Segmentation Revisited: A First Step Toward Fast Volumetric Operation Over Video Samples

Jeffery Kinnison, Mateusz Trokielewicz, Camila Carballo, A. Czajka, W. Scheirer
{"title":"Learning-Free Iris Segmentation Revisited: A First Step Toward Fast Volumetric Operation Over Video Samples","authors":"Jeffery Kinnison, Mateusz Trokielewicz, Camila Carballo, A. Czajka, W. Scheirer","doi":"10.1109/ICB45273.2019.8987377","DOIUrl":null,"url":null,"abstract":"Subject matching performance in iris biometrics is contingent upon fast, high-quality iris segmentation. In many cases, iris biometrics acquisition equipment takes a number of images in sequence and combines the segmentation and matching results for each image to strengthen the result. To date, segmentation has occurred in 2D, operating on each image individually. But such methodologies, while powerful, do not take advantage of potential gains in performance afforded by treating sequential images as volumetric data. As a first step in this direction, we apply the Flexible Learning-Free Reconstructoin of Neural Volumes (FLoRIN) framework, an open source segmentation and reconstruction framework originally designed for neural microscopy volumes, to volumetric segmentation of iris videos. Further, we introduce a novel dataset of near-infrared iris videos, in which each subject’s pupil rapidly changes size due to visible-light stimuli, as a test bed for FLoRIN. We compare the matching performance for iris masks generated by FLoRIN, deep-learning-based (SegNet), and Daugman’s (OSIRIS) iris segmentation approaches. We show that by incorporating volumetric information, FLoRIN achieves a factor of 3.6 to an order of magnitude increase in throughput with only a minor drop in subject matching performance. We also demonstrate that FLoRIN-based iris segmentation maintains this speedup on low-resource hardware, making it suitable for embedded biometrics systems.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Subject matching performance in iris biometrics is contingent upon fast, high-quality iris segmentation. In many cases, iris biometrics acquisition equipment takes a number of images in sequence and combines the segmentation and matching results for each image to strengthen the result. To date, segmentation has occurred in 2D, operating on each image individually. But such methodologies, while powerful, do not take advantage of potential gains in performance afforded by treating sequential images as volumetric data. As a first step in this direction, we apply the Flexible Learning-Free Reconstructoin of Neural Volumes (FLoRIN) framework, an open source segmentation and reconstruction framework originally designed for neural microscopy volumes, to volumetric segmentation of iris videos. Further, we introduce a novel dataset of near-infrared iris videos, in which each subject’s pupil rapidly changes size due to visible-light stimuli, as a test bed for FLoRIN. We compare the matching performance for iris masks generated by FLoRIN, deep-learning-based (SegNet), and Daugman’s (OSIRIS) iris segmentation approaches. We show that by incorporating volumetric information, FLoRIN achieves a factor of 3.6 to an order of magnitude increase in throughput with only a minor drop in subject matching performance. We also demonstrate that FLoRIN-based iris segmentation maintains this speedup on low-resource hardware, making it suitable for embedded biometrics systems.
重新访问无学习虹膜分割:对视频样本快速体积操作的第一步
虹膜生物识别中的主体匹配性能取决于快速、高质量的虹膜分割。在很多情况下,虹膜生物识别采集设备会按顺序采集多张图像,并结合每张图像的分割和匹配结果来加强结果。到目前为止,分割已经发生在2D中,对每个图像单独操作。但是,这种方法虽然功能强大,但没有利用将连续图像视为体积数据所带来的潜在性能增益。作为这个方向的第一步,我们将神经体积的灵活无学习重构框架(FLoRIN)应用于虹膜视频的体积分割。FLoRIN是一个开源的分割和重构框架,最初是为神经显微镜体积设计的。此外,我们引入了一个新颖的近红外虹膜视频数据集,其中每个受试者的瞳孔由于可见光刺激而迅速改变大小,作为FLoRIN的测试平台。我们比较了FLoRIN、基于深度学习的(SegNet)和道格曼(OSIRIS)虹膜分割方法生成的虹膜掩膜的匹配性能。我们表明,通过整合体积信息,FLoRIN实现了3.6到一个数量级的吞吐量增加,而主题匹配性能仅略有下降。我们还证明了基于florin的虹膜分割在低资源硬件上保持这种加速,使其适合嵌入式生物识别系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信