Analysis of Periodic Orbits in Cellular Binary Neural Networks

Hotaka Udagawa, Toshimichi Saito
{"title":"Analysis of Periodic Orbits in Cellular Binary Neural Networks","authors":"Hotaka Udagawa, Toshimichi Saito","doi":"10.1109/CNNA49188.2021.9610784","DOIUrl":null,"url":null,"abstract":"This paper studies cellular binary neural networks characterized by local binary connection and the signum activation function. The networks are simple in structure, are easy to implement, and can generate various binary periodic orbits. In order to analyze the dynamics, we define two feature quantities that evaluate complexity and stability of the periodic orbits. Using the two feature quantities, we investigate complex dynamics of typical networks.","PeriodicalId":325231,"journal":{"name":"2021 17th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA49188.2021.9610784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies cellular binary neural networks characterized by local binary connection and the signum activation function. The networks are simple in structure, are easy to implement, and can generate various binary periodic orbits. In order to analyze the dynamics, we define two feature quantities that evaluate complexity and stability of the periodic orbits. Using the two feature quantities, we investigate complex dynamics of typical networks.
元胞二元神经网络的周期轨道分析
研究了以局部二值连接和sgn激活函数为特征的元胞二值神经网络。该网络结构简单,易于实现,并能生成各种二元周期轨道。为了分析动力学,我们定义了两个特征量来评价周期轨道的复杂性和稳定性。利用这两个特征量,我们研究了典型网络的复杂动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信