R. Mansour, Oluwaseun Omoniyi, R. O’Leary, J. Windmill
{"title":"Fabrication of Ultraviolet-Curable Piezoelectric Composite for Sensor and Actuator Applications","authors":"R. Mansour, Oluwaseun Omoniyi, R. O’Leary, J. Windmill","doi":"10.1109/ICSENS.2018.8589943","DOIUrl":null,"url":null,"abstract":"In this work, we give a detailed examination of the development of a new piezoelectric ceramic-polymer composite. A full account of the major methods developed in making the polymer composite is presented. Norland Optical Adhesive 65 (“NOA65”) is an ultraviolet (UV)-curable adhesive with potential to be used as a functional material in stereolithography additive manufacturing. The salient aspects of processing such a composite is summarized. This involved preparing samples by using the spin coating technique. Samples of the composite mixture are spin coated on silver-coated glass slides at 2000 rpm for 10s to give a layer thickness of 100μm. The average $\\pmb d_{33}$ of the composite material was measured and shown to be 2.8 pm/V.","PeriodicalId":405874,"journal":{"name":"2018 IEEE SENSORS","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2018.8589943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this work, we give a detailed examination of the development of a new piezoelectric ceramic-polymer composite. A full account of the major methods developed in making the polymer composite is presented. Norland Optical Adhesive 65 (“NOA65”) is an ultraviolet (UV)-curable adhesive with potential to be used as a functional material in stereolithography additive manufacturing. The salient aspects of processing such a composite is summarized. This involved preparing samples by using the spin coating technique. Samples of the composite mixture are spin coated on silver-coated glass slides at 2000 rpm for 10s to give a layer thickness of 100μm. The average $\pmb d_{33}$ of the composite material was measured and shown to be 2.8 pm/V.