{"title":"Vv","authors":"D. LêAnh","doi":"10.4324/9781315062020-22","DOIUrl":null,"url":null,"abstract":"This paper proposes a simple particle swarm optimization with constriction factor (PSO-CF) method for solving optimal reactive power dispatch (ORPD) problem. The proposed PSO-CF is the conventional particle swarm optimization based on constriction factor which can deal with different objectives of the problem such as minimizing the real power losses, improving the voltage profile, and enhancing the voltage stability and properly handle various constraints for reactive power limits of generators and switchable capacitor banks, bus voltage limits, tap changer limits for transformers, and transmission line limits. The proposed method has been tested on the IEEE 30-bus and IEEE 118-bus systems and the obtained results are compared to those from other PSO variants and other methods in the literature. The result comparison has shown that the proposed method can obtain total power loss, voltage deviation or voltage stability index less than the others for the considered cases. Therefore, the proposed PSO-CF can be favorable solving the ORPD problem TÀI LIỆU THAM KHẢO [1]. Abou El Ela, A.A., Abido, M.A. & Spea, S.R., Differential evolution algorithm for optimal reactive power dispatch, Electric Power Systems Research, 81(2), 458-464 (2011). [2]. About El-Ela, A., Kinawy, A., ElSehiemy, R., Mouwafi, M., Optimal reactive power dispatch using ant colony optimization algorithm, Electrical Engineering (Archiv fur Elektrotechnik), 114 (2011). . [3]. Alsac, O.& Stott, B., Optimal load flow with steady-state security, IEEE Trans. Power Apparatus and Systems, 93, 745-751 (1974). [4]. Aoki, K., Fan, M. & Nishikori, A., Optimal VAR planning by approximation method Science & Technology Development, Vol 16, No.K22013 Trang 100 for recursive mixed integer linear programming, IEEE Trans. Power Systems, 3(4), 1741-1747 (1988).. [5]. Clerc, M. & Kennedy, J., The particle swarm Explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evolutionary Computation, 6(1), 58-73 (2002). [6]. Dabbagchi, I. & Christie, R., Power systems test case archive, University of Washington (1993). [7]. Devaraj, D. & Preetha Roselyn, J., Genetic algorithm based reactive power dispatch for voltage stability improvement, Electrical Power and Energy Systems, 32(10), 11511156 (2010). [8]. Esmin, A. A. A., Lambert-Torres, G. & Zambroni de Souza, A. C., A hybrid particle swarm optimization applied to loss power minimization, IEEE Trans. Power Systems, 2(2), 859-866 (2005).. [9]. Granville, S., Optimal reactive power dispatch through interior point methods, IEEE Trans. Power Systems, 9(1), 136-146 (1994).. [10]. Grudinin, N., Reactive power optimization using successive quadratic programming method, IEEE Trans. Power Systems, 13(4), 1219-1225 (1998).. [11]. Kennedy, J. , Eberhart, R., Particle swarm optimization, Proc. IEEE Conf. Neural Networks (ICNN’95), Perth, Australia, IV, 1942-1948 (1995).. [12]. Kessel, P., Glavitsch, H., Estimating the voltage stability of power systems, IEEE Trans Power Systems, 1(3), 346–54 (1986). [13]. Khazali, A. H., Kalantar, M., Optimal reactive power dispatch based on harmony search algorithm, Electrical Power and Energy Systems. [14]. Kirschen, D. S., Van Meeteren, H. P., MW/voltage control in a linear programming based optimal power flow, IEEE Trans. Power Systems, 3(2), 481-489 (1988).. [15]. Lai, L. L. & Ma, J. T., Application of evolutionary programming to reactive power planning, Comparison with nonlinear programming approach. IEEE Trans. Power Systems, 12(1), 198-206 (1997). [16]. Lee, K.Y, Park, Y.M., Ortiz, J.L., A united approach to optimal real and reactive power dispatch, IEEE Trans. Power Apparatus and Systems, PAS-104(5), 1147-1153 (1985). [17]. Li, Y., Cao, Y., Liu, Z., Liu, Y. & Jiang, Q., Dynamic optimal reactive power dispatch based on parallel particle swarm optimization algorithm, Computers and Mathematics with Applications, 57(11-12) 1835-1842 (2009). [18]. Lim, S.Y, Montakhab, M. & Nouri, H., A constriction factor based particle swarm optimization for economic dispatch, The 2009 European Simulation and Modelling Conference (ESM’2009), Leicester, United Kingdom (2009). TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 16, SOÁ K22013 Trang 101 [19]. Lu, F.C., Hsu, Y. Y., Reactive power/voltage control in a distribution substation using dynamic programming, IEE Proc. Gen. Transm. Distrib., 142 (6), 639–645 (1995).. [20]. Mahadevan, K. & Kannan, P.S., Comprehensive learning particle swarm optimization for reactive power dispatch, Applied Soft Computing, 10(2), 641-652 (2010).. [21]. Nanda, J., Hari, L. & Kothari, M. L., Challenging algorithm for optimal reactive power dispatch through classical coordination equations, IEE Proceedings C, 139 (2), 93-101 (1992).. [22]. Ratnaweera, A., Halgamuge, S K., Watson, H. C., Self organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, IEEE Trans. Evolutionary Computation, 8(3), 240-255 (2004). [23]. Shi, Y. & Eberhart, R., A modified particle swarm optimizer, Proc. The 1998 IEEE World Congress on Computational Intelligence, Piscataway, NJ, IEEE Press, 69-73 (1998) [24]. Urdaneta, A. J., Gomez, J. F., Sorrentino, E., Flores, L. & Diaz, R., A hybrid genetic algorithm for optimal reactive power planning based upon successive linear programming, IEEE Trans. Power Systems, 14 (4), 1292-1298 (1999).. [25]. Vlachogiannis, J. G., Lee, K. Y., A Comparative study on particle swarm optimization for optimal steady-state performance of power systems, IEEE Trans. Power Systems, 21(4), 1718-1728 (2006). [26]. Yan, W., Lu, S., Yu, D. C., A novel optimal reactive power dispatch method based on an improved hybrid evolutionary programming technique, IEEE Trans. Power Systems, 19(2), 913 (2004). [27]. Zhao, B., Guo, C. X., Cao, Y. J., A multiagent-based particle swarm optimization approach for optimal reactive power dispatch, IEEE Trans. Power Systems, 20(2), 1070-1078 (2005).. [28]. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J., Matpower's extensible optimal power flow architecture, Proc. Power and Energy Society General Meeting, IEEE, 1-7 (2009).","PeriodicalId":319202,"journal":{"name":"Dictionary of Agriculture","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dictionary of Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4324/9781315062020-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a simple particle swarm optimization with constriction factor (PSO-CF) method for solving optimal reactive power dispatch (ORPD) problem. The proposed PSO-CF is the conventional particle swarm optimization based on constriction factor which can deal with different objectives of the problem such as minimizing the real power losses, improving the voltage profile, and enhancing the voltage stability and properly handle various constraints for reactive power limits of generators and switchable capacitor banks, bus voltage limits, tap changer limits for transformers, and transmission line limits. The proposed method has been tested on the IEEE 30-bus and IEEE 118-bus systems and the obtained results are compared to those from other PSO variants and other methods in the literature. The result comparison has shown that the proposed method can obtain total power loss, voltage deviation or voltage stability index less than the others for the considered cases. Therefore, the proposed PSO-CF can be favorable solving the ORPD problem TÀI LIỆU THAM KHẢO [1]. Abou El Ela, A.A., Abido, M.A. & Spea, S.R., Differential evolution algorithm for optimal reactive power dispatch, Electric Power Systems Research, 81(2), 458-464 (2011). [2]. About El-Ela, A., Kinawy, A., ElSehiemy, R., Mouwafi, M., Optimal reactive power dispatch using ant colony optimization algorithm, Electrical Engineering (Archiv fur Elektrotechnik), 114 (2011). . [3]. Alsac, O.& Stott, B., Optimal load flow with steady-state security, IEEE Trans. Power Apparatus and Systems, 93, 745-751 (1974). [4]. Aoki, K., Fan, M. & Nishikori, A., Optimal VAR planning by approximation method Science & Technology Development, Vol 16, No.K22013 Trang 100 for recursive mixed integer linear programming, IEEE Trans. Power Systems, 3(4), 1741-1747 (1988).. [5]. Clerc, M. & Kennedy, J., The particle swarm Explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evolutionary Computation, 6(1), 58-73 (2002). [6]. Dabbagchi, I. & Christie, R., Power systems test case archive, University of Washington (1993). [7]. Devaraj, D. & Preetha Roselyn, J., Genetic algorithm based reactive power dispatch for voltage stability improvement, Electrical Power and Energy Systems, 32(10), 11511156 (2010). [8]. Esmin, A. A. A., Lambert-Torres, G. & Zambroni de Souza, A. C., A hybrid particle swarm optimization applied to loss power minimization, IEEE Trans. Power Systems, 2(2), 859-866 (2005).. [9]. Granville, S., Optimal reactive power dispatch through interior point methods, IEEE Trans. Power Systems, 9(1), 136-146 (1994).. [10]. Grudinin, N., Reactive power optimization using successive quadratic programming method, IEEE Trans. Power Systems, 13(4), 1219-1225 (1998).. [11]. Kennedy, J. , Eberhart, R., Particle swarm optimization, Proc. IEEE Conf. Neural Networks (ICNN’95), Perth, Australia, IV, 1942-1948 (1995).. [12]. Kessel, P., Glavitsch, H., Estimating the voltage stability of power systems, IEEE Trans Power Systems, 1(3), 346–54 (1986). [13]. Khazali, A. H., Kalantar, M., Optimal reactive power dispatch based on harmony search algorithm, Electrical Power and Energy Systems. [14]. Kirschen, D. S., Van Meeteren, H. P., MW/voltage control in a linear programming based optimal power flow, IEEE Trans. Power Systems, 3(2), 481-489 (1988).. [15]. Lai, L. L. & Ma, J. T., Application of evolutionary programming to reactive power planning, Comparison with nonlinear programming approach. IEEE Trans. Power Systems, 12(1), 198-206 (1997). [16]. Lee, K.Y, Park, Y.M., Ortiz, J.L., A united approach to optimal real and reactive power dispatch, IEEE Trans. Power Apparatus and Systems, PAS-104(5), 1147-1153 (1985). [17]. Li, Y., Cao, Y., Liu, Z., Liu, Y. & Jiang, Q., Dynamic optimal reactive power dispatch based on parallel particle swarm optimization algorithm, Computers and Mathematics with Applications, 57(11-12) 1835-1842 (2009). [18]. Lim, S.Y, Montakhab, M. & Nouri, H., A constriction factor based particle swarm optimization for economic dispatch, The 2009 European Simulation and Modelling Conference (ESM’2009), Leicester, United Kingdom (2009). TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 16, SOÁ K22013 Trang 101 [19]. Lu, F.C., Hsu, Y. Y., Reactive power/voltage control in a distribution substation using dynamic programming, IEE Proc. Gen. Transm. Distrib., 142 (6), 639–645 (1995).. [20]. Mahadevan, K. & Kannan, P.S., Comprehensive learning particle swarm optimization for reactive power dispatch, Applied Soft Computing, 10(2), 641-652 (2010).. [21]. Nanda, J., Hari, L. & Kothari, M. L., Challenging algorithm for optimal reactive power dispatch through classical coordination equations, IEE Proceedings C, 139 (2), 93-101 (1992).. [22]. Ratnaweera, A., Halgamuge, S K., Watson, H. C., Self organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, IEEE Trans. Evolutionary Computation, 8(3), 240-255 (2004). [23]. Shi, Y. & Eberhart, R., A modified particle swarm optimizer, Proc. The 1998 IEEE World Congress on Computational Intelligence, Piscataway, NJ, IEEE Press, 69-73 (1998) [24]. Urdaneta, A. J., Gomez, J. F., Sorrentino, E., Flores, L. & Diaz, R., A hybrid genetic algorithm for optimal reactive power planning based upon successive linear programming, IEEE Trans. Power Systems, 14 (4), 1292-1298 (1999).. [25]. Vlachogiannis, J. G., Lee, K. Y., A Comparative study on particle swarm optimization for optimal steady-state performance of power systems, IEEE Trans. Power Systems, 21(4), 1718-1728 (2006). [26]. Yan, W., Lu, S., Yu, D. C., A novel optimal reactive power dispatch method based on an improved hybrid evolutionary programming technique, IEEE Trans. Power Systems, 19(2), 913 (2004). [27]. Zhao, B., Guo, C. X., Cao, Y. J., A multiagent-based particle swarm optimization approach for optimal reactive power dispatch, IEEE Trans. Power Systems, 20(2), 1070-1078 (2005).. [28]. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J., Matpower's extensible optimal power flow architecture, Proc. Power and Energy Society General Meeting, IEEE, 1-7 (2009).