PERFUME

Nicolaas Weideman, Virginia K. Felkner, Wei-Cheng Wu, Jonathan May, Christophe Hauser, Luis Garcia
{"title":"PERFUME","authors":"Nicolaas Weideman, Virginia K. Felkner, Wei-Cheng Wu, Jonathan May, Christophe Hauser, Luis Garcia","doi":"10.1145/3465413.3488575","DOIUrl":null,"url":null,"abstract":"Algorithmic identification is the crux for several binary analysis applications, including malware analysis, vulnerability discovery, and embedded firmware reverse engineering. However, data-driven and signature-based approaches often break down when encountering outlier realizations of a particular algorithm. Moreover, reverse engineering of domain-specific binaries often requires collaborative analysis between reverse engineers and domain experts. Communicating the behavior of an unidentified binary program to non-reverse engineers necessitates the recovery of algorithmic semantics in a human-digestible form. This paper presents PERFUME, a framework that extracts symbolic math expressions from low-level binary representations of an algorithm. PERFUME works by translating a symbolic output representation of a binary function to a high-level mathematical expression. In particular, we detail how source and target representations are generated for training a machine translation model. We integrate PERFUME as a plug-in for Ghidra--an open-source reverse engineering framework. We present our preliminary findings for domain-specific use cases and formalize open challenges in mathematical expression extraction from algorithmic implementations.","PeriodicalId":400156,"journal":{"name":"Proceedings of the 2021 Research on offensive and defensive techniques in the Context of Man At The End (MATE) Attacks","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 Research on offensive and defensive techniques in the Context of Man At The End (MATE) Attacks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3465413.3488575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Algorithmic identification is the crux for several binary analysis applications, including malware analysis, vulnerability discovery, and embedded firmware reverse engineering. However, data-driven and signature-based approaches often break down when encountering outlier realizations of a particular algorithm. Moreover, reverse engineering of domain-specific binaries often requires collaborative analysis between reverse engineers and domain experts. Communicating the behavior of an unidentified binary program to non-reverse engineers necessitates the recovery of algorithmic semantics in a human-digestible form. This paper presents PERFUME, a framework that extracts symbolic math expressions from low-level binary representations of an algorithm. PERFUME works by translating a symbolic output representation of a binary function to a high-level mathematical expression. In particular, we detail how source and target representations are generated for training a machine translation model. We integrate PERFUME as a plug-in for Ghidra--an open-source reverse engineering framework. We present our preliminary findings for domain-specific use cases and formalize open challenges in mathematical expression extraction from algorithmic implementations.
香水
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信