Real-Time Face Identification Using Two Cooperative Active Cameras

Pichai Amnuaykanjanasin, S. Aramvith, T. Chalidabhongse
{"title":"Real-Time Face Identification Using Two Cooperative Active Cameras","authors":"Pichai Amnuaykanjanasin, S. Aramvith, T. Chalidabhongse","doi":"10.1109/ICARCV.2006.345071","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for real-time face detection and identification using two cooperative pan-tilt-zoom (PTZ) cameras. For each camera, the human face is detected and segmented using motion and skin color cues. The face segment is then analyzed by considering the relative position of the facial color blob to determine the pose. After facial pose is estimated, the identification is performed using a face matching method based on color-distribution. Identification results with confidence values from both cameras are weighted combined to conclude the final result. Our experimental results demonstrate successful face detection and tracking in uncontrolled background, and the system is capable for real-time face identification. The experiments also confirm the collaboration between cameras improves the identification performance","PeriodicalId":415827,"journal":{"name":"2006 9th International Conference on Control, Automation, Robotics and Vision","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Control, Automation, Robotics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2006.345071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes a method for real-time face detection and identification using two cooperative pan-tilt-zoom (PTZ) cameras. For each camera, the human face is detected and segmented using motion and skin color cues. The face segment is then analyzed by considering the relative position of the facial color blob to determine the pose. After facial pose is estimated, the identification is performed using a face matching method based on color-distribution. Identification results with confidence values from both cameras are weighted combined to conclude the final result. Our experimental results demonstrate successful face detection and tracking in uncontrolled background, and the system is capable for real-time face identification. The experiments also confirm the collaboration between cameras improves the identification performance
基于两个协同活动摄像头的实时人脸识别
提出了一种利用两个协同的平移-倾斜变焦(PTZ)摄像头进行实时人脸检测和识别的方法。对于每个摄像头,人脸被检测和分割使用运动和肤色线索。然后,通过考虑面部颜色斑点的相对位置来分析面部片段,以确定姿态。对人脸姿态进行估计后,采用基于颜色分布的人脸匹配方法进行识别。对两个相机的置信值的识别结果进行加权组合,得出最终结果。实验结果表明,该系统在非受控背景下能够成功地进行人脸检测和跟踪,能够实现实时人脸识别。实验还证实了相机之间的协作可以提高识别性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信