{"title":"Automated Scoring System Using Dependency-Based Weighted Semantic Similarity Model","authors":"Liang Chen, Yajun Liu","doi":"10.1109/KAM.2009.77","DOIUrl":null,"url":null,"abstract":"Traditionally, automated scoring system uses semantic similarity between words and the weight of words to calculate semantic similarity between student's answer and standard answer. It doesn't consider the word-order or syntactic information, which can improve the knowledge representation and therefore lead to better performance. This article presents a novel approach called dependency-based weighted semantic similarity model which takes syntactic relations into account and incorporates word-based information in addition to dependency parsing. The experiment shows that compared with traditional word-based weighted semantic similarity model, the dependency-based weighted semantic similarity model improves the precision obviously. It also provides better discrimination of syntactic-semantic knowledge representation than the traditional one.","PeriodicalId":192986,"journal":{"name":"2009 Second International Symposium on Knowledge Acquisition and Modeling","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Symposium on Knowledge Acquisition and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KAM.2009.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Traditionally, automated scoring system uses semantic similarity between words and the weight of words to calculate semantic similarity between student's answer and standard answer. It doesn't consider the word-order or syntactic information, which can improve the knowledge representation and therefore lead to better performance. This article presents a novel approach called dependency-based weighted semantic similarity model which takes syntactic relations into account and incorporates word-based information in addition to dependency parsing. The experiment shows that compared with traditional word-based weighted semantic similarity model, the dependency-based weighted semantic similarity model improves the precision obviously. It also provides better discrimination of syntactic-semantic knowledge representation than the traditional one.