Dual mutation strategies for mixed-integer optimisation in power station design

Kai Chen, I. Parmee, C. R. Gane
{"title":"Dual mutation strategies for mixed-integer optimisation in power station design","authors":"Kai Chen, I. Parmee, C. R. Gane","doi":"10.1109/ICEC.1997.592340","DOIUrl":null,"url":null,"abstract":"This paper presents the integration of evolutionary search (AS) with the design and operation of nuclear power stations. The objective is to improve the overall performance of the thermal cycle of a nuclear power plant by optimising both station design and operation using integrated evolutionary search and conventional optimisation techniques. The problem pursued is in the class of mixed-integer, non-linear constrained optimisation problems. After an initial parametric study of various adaptive search and classical optimisation techniques to determine their relative potential within a search space characterised by heavy non-linear constraints, a hybrid approach has been developed. This firstly utilises a genetic algorithm (GA) as a pre-processor to identify a feasible region within the search space before employing a dual-mutation GA strategy to search the space of mixed-integer variables. A linear programming optimisation routine then periodically searches from the best GA points with the design configuration fixed to return an optimal solution in terms of plant performance.","PeriodicalId":167852,"journal":{"name":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","volume":"C-36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1997.592340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper presents the integration of evolutionary search (AS) with the design and operation of nuclear power stations. The objective is to improve the overall performance of the thermal cycle of a nuclear power plant by optimising both station design and operation using integrated evolutionary search and conventional optimisation techniques. The problem pursued is in the class of mixed-integer, non-linear constrained optimisation problems. After an initial parametric study of various adaptive search and classical optimisation techniques to determine their relative potential within a search space characterised by heavy non-linear constraints, a hybrid approach has been developed. This firstly utilises a genetic algorithm (GA) as a pre-processor to identify a feasible region within the search space before employing a dual-mutation GA strategy to search the space of mixed-integer variables. A linear programming optimisation routine then periodically searches from the best GA points with the design configuration fixed to return an optimal solution in terms of plant performance.
电站混合整数优化设计的双突变策略
本文提出了进化搜索与核电站设计和运行的结合。目标是通过综合进化搜索和传统优化技术优化电站设计和运行,提高核电站热循环的整体性能。所追求的问题是一类混合整数,非线性约束优化问题。经过对各种自适应搜索和经典优化技术的初始参数研究,以确定它们在以严重非线性约束为特征的搜索空间中的相对潜力,开发了一种混合方法。该算法首先利用遗传算法(GA)作为预处理,在搜索空间内确定可行区域,然后采用双突变遗传算法策略搜索混合整数变量空间。然后,线性规划优化程序定期从固定设计配置的最佳遗传点搜索,以返回根据工厂性能的最佳解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信