A Cross-Cluster Approach for Measuring Semantic Similarity between Concepts

H. Al-Mubaid, Hoa A. Nguyen
{"title":"A Cross-Cluster Approach for Measuring Semantic Similarity between Concepts","authors":"H. Al-Mubaid, Hoa A. Nguyen","doi":"10.1109/IRI.2006.252473","DOIUrl":null,"url":null,"abstract":"We present a cross-cluster approach for measuring the semantic similarity/distance between two concept nodes in ontology. The proposed approach helps overcome the differences of granularity degrees of clusters in ontology that most ontology-based measures do not concern. The approach is based on 3 features (1) cross-modified path length feature between the concept nodes, (2) a new features: the common specificity feature of two concept nodes in the ontology hierarchy, and (3) the local granularity of the clusters. The experimental evaluations using benchmark human similarity datasets confirm the correctness and the efficiency of the proposed approach, and show that our semantic measure outperforms the existing techniques. The proposed measure gives the highest correlation (0.873) with human ratings compared to the existing measures using the benchmark RG dataset and WordNet2.0","PeriodicalId":402255,"journal":{"name":"2006 IEEE International Conference on Information Reuse & Integration","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Information Reuse & Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2006.252473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a cross-cluster approach for measuring the semantic similarity/distance between two concept nodes in ontology. The proposed approach helps overcome the differences of granularity degrees of clusters in ontology that most ontology-based measures do not concern. The approach is based on 3 features (1) cross-modified path length feature between the concept nodes, (2) a new features: the common specificity feature of two concept nodes in the ontology hierarchy, and (3) the local granularity of the clusters. The experimental evaluations using benchmark human similarity datasets confirm the correctness and the efficiency of the proposed approach, and show that our semantic measure outperforms the existing techniques. The proposed measure gives the highest correlation (0.873) with human ratings compared to the existing measures using the benchmark RG dataset and WordNet2.0
概念间语义相似度度量的跨聚类方法
提出了一种跨聚类方法来测量本体中两个概念节点之间的语义相似度/距离。提出的方法有助于克服本体中集群粒度度的差异,这是大多数基于本体的度量所不关心的。该方法基于3个特征(1)概念节点之间交叉修改的路径长度特征,(2)一个新特征:本体层次中两个概念节点的共同特异性特征,(3)聚类的局部粒度特征。基于基准人类相似度数据集的实验评估证实了该方法的正确性和有效性,并表明我们的语义度量优于现有技术。与使用基准RG数据集和WordNet2.0的现有度量相比,提议的度量与人类评级的相关性最高(0.873)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信