Directional bending monitoring using a multimode elliptical-core fiber and a machine learning algorithm

Rodolfo Martínez-Manuel, Jonathan Esquivel-Hernández, Luis M. Valentín-Coronado, M. Shlyagin, S. Larochelle
{"title":"Directional bending monitoring using a multimode elliptical-core fiber and a machine learning algorithm","authors":"Rodolfo Martínez-Manuel, Jonathan Esquivel-Hernández, Luis M. Valentín-Coronado, M. Shlyagin, S. Larochelle","doi":"10.1117/12.2678451","DOIUrl":null,"url":null,"abstract":"An approach for directional bending monitoring based on a multimode fiber and a machine learning algorithm is presented. The sensor if formed by splicing a single mode fiber to a multimode elliptical-core fiber. Using this elliptical-core fiber, multimode interference generates an interferogram with non-uniform amplitude and non-periodic shape. These characteristics are important to process the sensing signal using a machine learning algorithm. The machine learning algorithm implemented is the well-known random forest algorithm. In the reported experiments, the fiber is bended in different directions and different magnitudes of bending, generating a specific interferogram in each position, then each bending position is identified by the random forest algorithm. Once the position is identified, the trajectory of the sensor can be calculated. Experimental demonstration for directional bending monitoring, based on a machine learning algorithm, is presented.","PeriodicalId":424244,"journal":{"name":"European Workshop on Optical Fibre Sensors","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Workshop on Optical Fibre Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2678451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An approach for directional bending monitoring based on a multimode fiber and a machine learning algorithm is presented. The sensor if formed by splicing a single mode fiber to a multimode elliptical-core fiber. Using this elliptical-core fiber, multimode interference generates an interferogram with non-uniform amplitude and non-periodic shape. These characteristics are important to process the sensing signal using a machine learning algorithm. The machine learning algorithm implemented is the well-known random forest algorithm. In the reported experiments, the fiber is bended in different directions and different magnitudes of bending, generating a specific interferogram in each position, then each bending position is identified by the random forest algorithm. Once the position is identified, the trajectory of the sensor can be calculated. Experimental demonstration for directional bending monitoring, based on a machine learning algorithm, is presented.
利用多模椭圆芯光纤和机器学习算法进行定向弯曲监测
提出了一种基于多模光纤和机器学习算法的定向弯曲监测方法。该传感器由单模光纤与多模椭圆芯光纤拼接而成。利用这种椭圆芯光纤,多模干涉产生非均匀振幅和非周期形状的干涉图。这些特征对于使用机器学习算法处理传感信号非常重要。实现的机器学习算法是众所周知的随机森林算法。在实验中,对光纤进行不同方向和不同弯曲幅度的弯曲,在每个位置产生特定的干涉图,然后通过随机森林算法识别每个弯曲位置。一旦确定了位置,就可以计算传感器的轨迹。给出了一种基于机器学习算法的定向弯曲监测实验演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信