Event-Based Tracking Evaluation Metric

D. Roth, E. Koller-Meier, D. Rowe, T. Moeslund, L. Van Gool
{"title":"Event-Based Tracking Evaluation Metric","authors":"D. Roth, E. Koller-Meier, D. Rowe, T. Moeslund, L. Van Gool","doi":"10.1109/WMVC.2008.4544059","DOIUrl":null,"url":null,"abstract":"This paper describes a novel tracking performance evaluation metric based on the successful detection of events, rather than low-level image processing criteria. A general event metric is defined to measure whether the agents and actions in the scene given by the ground truth were correctly tracked by comparing two event lists using dynamic programming. This metric is suitable to evaluate and compare different tracking approaches where the underlying algorithm may be completely different. Furthermore, we introduce an automatic extraction of those semantically high level events from different types of low level tracking data and human annotated ground truth. A case study with two different trackers on public datasets shows the effectiveness of this evaluation scheme.","PeriodicalId":150666,"journal":{"name":"2008 IEEE Workshop on Motion and video Computing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Workshop on Motion and video Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMVC.2008.4544059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper describes a novel tracking performance evaluation metric based on the successful detection of events, rather than low-level image processing criteria. A general event metric is defined to measure whether the agents and actions in the scene given by the ground truth were correctly tracked by comparing two event lists using dynamic programming. This metric is suitable to evaluate and compare different tracking approaches where the underlying algorithm may be completely different. Furthermore, we introduce an automatic extraction of those semantically high level events from different types of low level tracking data and human annotated ground truth. A case study with two different trackers on public datasets shows the effectiveness of this evaluation scheme.
基于事件的跟踪评估度量
本文描述了一种新的基于事件成功检测的跟踪性能评估指标,而不是基于低级图像处理标准。定义了一个通用的事件度量,通过比较两个事件列表,使用动态规划来衡量由ground truth给出的场景中的agent和动作是否被正确跟踪。这个指标适用于评估和比较不同的跟踪方法,其中底层算法可能完全不同。此外,我们还引入了一种从不同类型的低层次跟踪数据和人工注释的地面事实中自动提取语义高层次事件的方法。在公共数据集上使用两种不同跟踪器的案例研究表明了该评估方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信