Breast Lesions Classification Using Modified Non-Recursive Discrete Biorthogonal Wavelet Transform

Hsieh-Wei Lee, S. Lei, K. Hung, Bin-Da Liu
{"title":"Breast Lesions Classification Using Modified Non-Recursive Discrete Biorthogonal Wavelet Transform","authors":"Hsieh-Wei Lee, S. Lei, K. Hung, Bin-Da Liu","doi":"10.1109/BIOCAS.2007.4463349","DOIUrl":null,"url":null,"abstract":"Infiltrative nature on ultrasound images is a significant feature implying a malignant breast lesion. Characterizing the infiltrative nature with high effective and computationally inexpensive features is crucial for realizing computer-aided diagnosis. In this paper, the infiltrative nature is sighted as irregularly local variance in a 1-D signal, which is induced due to the existence of some high octave energies. These energies are extractable by a modified 1-D non-recursive discrete biorthogonal wavelet transform. The experimental results show that the proposed wavelet-based features have high individual feature efficacy and the capability of improving combined feature performance.","PeriodicalId":273819,"journal":{"name":"2007 IEEE Biomedical Circuits and Systems Conference","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2007.4463349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Infiltrative nature on ultrasound images is a significant feature implying a malignant breast lesion. Characterizing the infiltrative nature with high effective and computationally inexpensive features is crucial for realizing computer-aided diagnosis. In this paper, the infiltrative nature is sighted as irregularly local variance in a 1-D signal, which is induced due to the existence of some high octave energies. These energies are extractable by a modified 1-D non-recursive discrete biorthogonal wavelet transform. The experimental results show that the proposed wavelet-based features have high individual feature efficacy and the capability of improving combined feature performance.
基于改进非递归离散双正交小波变换的乳腺病变分类
超声图像的浸润性是乳腺恶性病变的重要特征。高效且计算成本低廉的浸润性质表征是实现计算机辅助诊断的关键。本文将浸润性看作是一维信号中由于某些高倍频能量的存在而引起的不规则局部方差。这些能量可通过改进的一维非递归离散双正交小波变换提取。实验结果表明,所提出的小波特征具有较高的个体特征有效性和提高组合特征性能的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信