Kriging Interpolation

P. Goovaerts
{"title":"Kriging Interpolation","authors":"P. Goovaerts","doi":"10.22224/gistbok/2019.4.4","DOIUrl":null,"url":null,"abstract":"Kriging is a geostatistical interpolation technique that considers both the distance and the degree of variation between known data points when estimating values in unknown areas. A kriged estimate is a weighted linear combination of the known sample values around the point to be estimated. Applied properly, Kriging allows the user to derive weights that result in optimal and unbiased estimates. It attempts to minimize the error variance and set the mean of the prediction errors to zero so that there are no overor under-estimates. Included with the Kriging routine is the ability to construct a semivariogram of the data which is used to weight nearby sample points when interpolating. It also provides a means for users to understand and model the directional (e.g., north-south, east-west) trends of their data. A unique feature of Kriging is that it provides an estimation of the error at each interpolated point, providing a measure of confidence in the modeled surface.","PeriodicalId":325401,"journal":{"name":"Geographic Information Science & Technology Body of Knowledge","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographic Information Science & Technology Body of Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22224/gistbok/2019.4.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Kriging is a geostatistical interpolation technique that considers both the distance and the degree of variation between known data points when estimating values in unknown areas. A kriged estimate is a weighted linear combination of the known sample values around the point to be estimated. Applied properly, Kriging allows the user to derive weights that result in optimal and unbiased estimates. It attempts to minimize the error variance and set the mean of the prediction errors to zero so that there are no overor under-estimates. Included with the Kriging routine is the ability to construct a semivariogram of the data which is used to weight nearby sample points when interpolating. It also provides a means for users to understand and model the directional (e.g., north-south, east-west) trends of their data. A unique feature of Kriging is that it provides an estimation of the error at each interpolated point, providing a measure of confidence in the modeled surface.
克里格插值
Kriging是一种地质统计学插值技术,它在估计未知区域的值时考虑了已知数据点之间的距离和变化程度。克里格估计是待估计点周围已知样本值的加权线性组合。如果应用得当,Kriging允许用户得出最优和无偏估计的权重。它试图将误差方差最小化,并将预测误差的均值设置为零,这样就不会出现高估或低估的情况。Kriging例程包括构建数据的半变异函数的能力,该函数在插值时用于对附近的样本点进行加权。它还为用户提供了了解其数据的方向(例如,南北、东西)趋势和建立模型的方法。Kriging的一个独特之处在于它提供了对每个插值点误差的估计,从而提供了对建模表面的置信度度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信